
VMS RTL Mathematics
(MTH$) Manual

Order Number: AA-LA 7 2A-TE

April 1988

This manual documents the mathematics routines contained in the MTH$
facility of the VMS Run-Time Library.

Revision/Update Information: This document supersedes Section 4
and the MTH$ portion of Part II of the
VAX/VMS Run-Time Library Routines
Reference Manual, Version 4.4.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

~U~UIJ~D™ DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO RICO* CANADA INTERNATIONAL

ZK4610

Digital Equipment Corporation
P.O. Box CS2008

Digital Equipment
of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire
03061

100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

c/o Digital§ local subsidiary
or approved distributor

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript ®

printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

® PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE ix

CHAPTER 1 INTRODUCTION TO MTH$ 1-1

1.1 ENTRY POINT NAMES 1-1

1.2 CALLING CONVENTIONS 1-2

1.3 ALGORITHMS 1-2

1.4 CONDITION HANDLING 1-3

1.5 COMPLEX NUMBERS 1-3

1.6 ROUTINES NOT DOCUMENTED IN THE MTH$ REFERENCE
SECTION 1-4

1.7 EXAMPLES OF CALLS TO RUN-TIME LIBRARY MATHEMATICS
ROUTINES 1-9

1.7.1 BASIC Example 1-9
1.7.2 COBOL Example 1-9
1.7.3 FORTRAN Examples 1-10
1.7.4 MACRO Examples 1-12
1.7.5 PASCAL Examples 1-14
1.7.6 PL/I Examples 1-15

MTH$ REFERENCE SECTION
MTH$XACOS MTH-3

MTH$XACOSD MTH-6

MTH$XASIN MTH-9

MTH$XASIND MTH-11

MTH$XATAN MTH-13

MTH$XATAND MTH-15

MTH$XATAN2 MTH-17

v

Contents

MTH$XATAND2 MTH-19
MTH$XATANH MTH-21
MTH$CXABS MTH-23
MTH$CCOS MTH-26
MTH$CXCOS MTH-28
MTH$CEXP MTH-31
MTH$CXEXP MTH-33
MTH$CLOG MTH-36
MTH$CXLOG MTH-38
MTH$CMPLX MTH-40
MTH$XCMPLX MTH-42
MTH$CONJG MTH-44
MTH$XCONJG MTH-45
MTH$XCOS MTH-47
MTH$XCOSD MTH-49
MTH$XCOSH MTH-51
MTH$CSIN MTH-53
MTH$CXSIN MTH-54
MTH$CSQRT MTH-57
MTH$CXSQRT MTH-59
MTH$CVT_x_x MTH-62
MTH$CVT_)(A_)(A MTH-64
MTH$XEXP MTH-66
MTH$HACOS MTH-69
MTH$HACOSD MTH-71
MTH$HASIN MTH-73
MTH$HASIND MTH-75
MTH$HATAN MTH-77
MTH$HATAND MTH-79
MTH$HATAN2 MTH-81
MTH$HATAND2 MTH-83
MTH$HATANH MTH-85
MTH$HCOS MTH-87
MTH$HCOSD MTH-88
MTH$HCOSH MTH-89
MTH$HEXP MTH-91
MTH$HLOG MTH-93
MTH$HLOG2 MTH-95
MTH$HLOG10 MTH-97
MTH$HSIN MTH-99
MTH$HSIND MTH-100
MTH$HSINH MTH-102

vi

MTH$HSQRT

MTH$HTAN

MTH$HTAND
MTH$HTANH

MTH$XIMAG

MTH$XLOG

MTH$XLOG2
MTH$XLOG10

MTH$RANDOM

MTH$XREAL

MTH$XSIN
MTH$XSINCOS

MTH$XSINCOSD

MTH$XSIND
MTH$XSINH

MTH$XSQRT

MTH$XTAN

MTH$XTAND

MTH$XTANH

MTH$UMAX

MTH$UMIN

APPENDIX A UNDOCUMENTED MTH$ ROUTINES

INDEX

TABLES
1-1

A-1

Additional Mathematics Routines

Undocumented MTH$ Routines

Contents

MTH-104

MTH-106

MTH-108
MTH-110

MTH-112

MTH-114

MTH-116

MTH-118

MTH-120

MTH-122

MTH-124
MTH-126

MTH-129

MTH-132

MTH-134
MTH-136

MTH-138

· MTH-140

MTH-142

MTH-144

MTH-145

A-1

1-4

A-1

vii

Preface

This manual provides users of the VMS operating system with detailed usage
and reference information on mathematics routines supplied in the MTH$
facility of the Run-Time Library.

Run-Time Library routines can only be used in programs written in languages
that produce native code for the VAX hardware. At present, these languages
include VAX MACRO and the following compiled high-level languages:

VAX Ada
VAX BASIC
VAX BLISS-32
VAXC
VAX COBOL
VAX COBOL-74
VAX CORAL
VAX DIBOL
VAX FORTRAN
VAX Pascal
VAX PL/I
VAX RPG
VAX SCAN

Interpreted languages which can also access Run-Time Library routines
include VAX DSM and DATATRIEVE.

Intended Audience
This manual is intended for system and application programmers who want
to call Run-Time Library routines.

Document Structure
This manual is organized into two parts as follows:

• The introductory chapters provide guidelines on using the MTH$
mathematics routines.

• The MTH$ Reference Section provides detailed reference information on
each mathematics routine contained in the MTH$ facility of the Run­
Time Library. This information is presented using the documentation
format described in the Introduction to the VMS Run-Time Library. Routine
descriptions appear in alphabetical order by routine name.

ix

Preface

Associated Documents

x

The Run-Time Library routines are documented in a series of reference
manuals. A general overview of the Run-Time Library and a description
of how the Run-Time Library routines are accessed is presented in the
Introduction to the VMS Run-Time Library. Descriptions of the other RTL
facilities and their corresponding routines and usages are discussed in the
following books:

• The VMS RTL DECtalk (DTK$) Manual

• The VMS RTL Library (LIB$) Manual

• The VMS RTL General Purpose (OTS$) Manual

• The VMS RTL Parallel Processing (PPL$) Manual

• The VMS RTL Screen Management (SMG$) Manual

• The VMS RTL String Manipulation (STR$) Manual

The VAX Procedure Calling and Condition Handling Standard, which is
documented in the Introduction to System Routines, contains useful information
for anyone who wants to call Run-Time Library routines.

Applications programmers of any language may refer to the Guide to Creating
VMS Modular Procedures for the Modular Programming Standard and other
guidelines.

High-level language programmers will find additional information on calling
Run-Time Library routines in their language reference manual. Additional
information may also be found in the language user's guide provided with
your VAX language.

The Guide to Using VMS Command Procedures may also be useful.

For a complete list and description of the manuals in the VMS documentation
set, see the Overview of VMS Documentation.

Conventions
Convention

CTRL/C

$SHOW TIME
05-JUN-1988 11 :55:22

$TYPE MYFILE.DAT

input-file, ...

[logical-name]

quotation marks
apostrophes

Preface

Meaning

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In 9-Xamples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks ("). The term
apostrophe (') is used to refer to a single
quotation mark.

Other conventions used in the documentation of Run-Time Library routines
are described in the Introduction to the VMS Run-Time Library.

xi

1 Introduction to MTH$

The Run-Time Library mathematics routines may be called to perform a wide
variety of computations including the following:

• Complex exponentiation

• Complex function evaluation

• Exponentiation

• Floating-point trigonometric function evaluation

• Miscellaneous function evaluation

The OTS$ facility provides additional language-independent arithmetic
support routines.

This introduction to Run-Time Library mathematics routines includes
examples of how to call mathematics routines from BASIC, COBOL,
FORTRAN, MACRO, PASCAL, and PL/I.

1 .1 Entry Point Names
The names of the mathematics routines are formed by adding the MTH$
prefix to the function names.

When function arguments and returned values are of the same data type, the
first letter of the name indicates this data type. When function arguments and
returned values are of different data types, the first letter indicates the data
type of the returned value, and the second letter indicates the data type of the
argument(s).

The letters used as data type prefixes are listed below.

Letter Data Type

I Word

J Longword

D O_floating

G G_floating

H H_floating

c F _floating complex

CD O_floating complex

CG G_floating complex

Generally, F-floating data types have no letter designation. For example,
MTH$SIN returns an F-floating value of the sine of an F-floating argument
and MTH$DSIN returns a D-floating value of the sine of a D-floating
argument. However, in some of the miscellaneous functions, F-floating
data types are referenced by the letter designation A.

1-1

Introduction to MTH$
1.2 Calling Conventions

1.2 Calling Conventions

1 .3 Algorithms

1-2

All calls to mathematics routines, as described in the FORMAT section of
each routine, accept arguments passed by reference. JSB entry points accept
arguments passed by value.

All mathematics routines return values in RO or RO /Rl except those routines
for which the values cannot fit in 64 bits. D-floating complex, G-floating
complex and H-floating values are data structures which are larger than 64
bits. Routines that return values which cannot fit in registers RO/Rl return
their function values into the first argument in the argument list.

The notation JSB MTH$NAME_Rn, where n is the highest register number
referenced, indicates that an equivalent JSB entry point is available. No
registers are saved; only registers RO:Rn are changed.

Routines with JSB entry points accept a single argument in RO:Rm, where m,
which is defined below, is dependent on the data type.

Data Type m

F _floating 0

D_floating

G_floating 1

H_floating 3

A routine which returns one value returns it to registers RO:Rm.

When a routine returns two values, for example MTH$SINCOS, the
fi:rst value is returned in RO:Rm and the second value is returned in
(R <m+l> :R <2•m+l>).

Note that for routines that return a single value, n> =m. For routines that
return two values, n> =2•m + 1.

All CALL entry points for mathematics routines do the following:

• Disable floating-point underflow

• Enable integer overflow

• Cause no floating-point overflow or other arithmetic traps or faults

• Preserve all other enabled operations across the CALL

JSB entry points execute in the context of the caller with the enable operations
as set by the caller. Since the routines do not cause arithmetic traps or faults,
their operation is not affected by the setting of the arithmetic trap enables,
except as noted.

For more detailed information on CALL and JSB entry points, refer to the
Introduction to the VMS Run-Time Library.

For those mathematics routines that have corresponding algorithms, the
· complete algorithm can be found in the Description section of the routine
description appearing in the MTH$ Reference Section of this manual.

Introduction to MTH$
1 .4 Condition Handling

1 .4 Condition Handling
Error conditions are indicated by using the VAX signaling mechanism. The
VAX signaling mechanism signals all conditions in mathematics routines
as SEVERE by calling LIB$SIGNAL. When a SEVERE error is signaled, the
image is caused to exit after printing an error message. A user-established
condition handler can be written to cause execution to continue at the point
of the error by returning SS$_CQNTINUE. A mathematics routine returns to
its caller after the contents of RO/Rl have been restored from the mechanism
argument vector CHF$L _MCH_SAVRO /Rl. Thus, the user-established
handler should correct CHF$L_MCH_SAVRO/Rl to the desired function
value to be returned to the caller of the mathematics routine.

D-floating complex, G-floating complex, and H-floating values cannot be
corrected with a user-established condition handler, because R2/R3 are not
available in the mechanism argument vector.

Note that it is more reliable to correct RO and Rl to resemble RO and Rl of
a double-precision floating-point value. A double-precision floating-point
value correction works for both single- and double-precision values. If
the correction is not performed, the floating-point reserved operand -0.0
is returned. A floatingLpoint reserved operand is a floating-point datum
with a sign bit of 1 and a biased exponent of zero. Accessing the floating­
point reserved operand will cause a reserved operand fault. See the VMS
RTL Library (LIB$) Manual for a complete description of how to write user
condition handlers for SEVERE errors.

A few mathematics routines signal floating underflow if the calling program
OSB or CALL) has enabled floating underflow faults or traps.

All mathematics routines access input arguments and the real and imaginary
parts of complex numbers using floating-point instructions. Therefore, a
reserved operand fault can occur in any mathematics routine.

1 .5 Complex Numbers
A complex number y is defined as an ordered pair of real numbers r and i,
where r is the real part and i is the imaginary part of the complex number.

y=(r,i)

VMS supports three floating-point complex types: F-floating complex, D­
floating complex, and G-floating complex. There is no H-floating complex
data type.

Run-Time Library mathematics routines that use complex arguments require
two x-floating values to be passed by reference for each argument. The
first x-floating value contains r, the real part of the complex number. The
second x-floating value contains i, the imaginary part of the complex number.
Similarly, Run-Time Library mathematics routines that return complex
function values return two x-floating values. Some Language Independent
Support (OTS$) routines also calculate complex functions.

Note that complex functions have no JSB entry points.

1-3

Introduction to MTH$
1.6 Routines Not Documented in the MTH$ Reference Section

1.6 Routines Not Documented in the MTH$ Reference Section

1-4

The mathematics routines in Table 1-1 are not found in the reference section
of this manual. Instead, their entry points and argument information are
listed in Appendix A of this manual.

A reserved operand fault can occur for any floating-point input argument
in any mathematics routine. Other condition values signaled by each
mathematics routine are indicated in the footnotes.

Table 1-1 Additional Mathematics Routines

Entry Point Function

Absolute Value Routines

MTH$ABS

MTH$DABS

MTH$GABS

MTH$HABS

MTH$11ABS

MTH$JIABS

F-floating absolute value

D-floating absolute value

G-floating absolute value

H-floating absolute value 1

Word absolute value2

Longword absolute value2

Bitwise AND Operator Routines

MTH$11AND

MTH$JIAND

Bitwise AND of two word arguments

Bitwise AND of two longword arguments

F-floating Conversion Routines

MTH$DBLE

MTH$GDBLE

MTH$11FIX

MTH$JIFIX

Convert F-floating to D-floating (exact)

Convert F-floating to G-floating (exact)

Convert F-floating to word (truncated)2

Convert F-floating to longword (truncated)2

1 Returns value to the first argument; value exceeds 64 bits.

21nteger overflow exceptions can occur.

Introduction to MTH$
1.6 Routines Not Documented in the MTH$ Reference Section

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point Function

Floating-Point Positive Difference Routines

MTH$DIM

MTH$001M

MTH$GDIM

MTH$HOIM

MTH$11DIM

MTH$JIOIM

Positive difference of two F-floating arguments3
•
4

Positive difference of two 0-floating arguments3
•
4

Positive difference of two G-floating arguments3
•
4

Positive difference of two H-floating arguments 1,
3

,
4

Positive difference of two word arguments2

Positive difference of two longword arguments2

Bitwise Exclusive OR Operator Routines

MTH$11EOR

MTH$JIEOR

Bitwise exclusive OR of two word arguments

Bitwise exclusive OR of two longword arguments

Integer to Floating-point Conversion Routines

MTH$FLOATI

MTH$0FLOTI

MTH$GFLOTI

MTH$FLOATJ

MTH$0FLOTJ

MTH$GFLOTJ

Convert word to F-floating (exact)

Convert word to 0-floating (exact)

Convert word to G-floating (exact)

Convert longword to F-floating (exact)

Convert word to 0-floating (exact)

Convert longword to G-floating (exact)

Conversion to Greatest Floating-point Integer Routines

MTH$FLOOR

MTH$0FLOOR

MTH$GFLOOR

MTH$HFLOOR

Convert F-floating to greatest F-floating integer

Convert 0-floating to greatest 0-floating integer

Convert G-floating to greatest G-floating integer

Convert H-floating to greatest H-floating integer 1

1 Returns value to the first argument; value exceeds 64 bits.

2 1nteger overflow exceptions can occur.

3 Floating-point overflow exceptions can occur.

4 Floating-point underflow exceptions can occur.

1-5

Introduction to MTH$
1.6 Routines Not Documented in the MTH$ Reference Section

1-6

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point Function

Floating-point Truncation Routines

MTH$AINT

MTH$DINT

MTH$11DINT

MTH$JIDINT

MTH$GINT

MTH$11GINT

MTH$JIGINT

MTH$HINT

MTH$11HINT

MTH$JIHINT

MTH$11NT

MTH$JINT

Convert F-floating to truncated F-floating3

Convert D-floating to truncated D-floating

Convert D-floating to truncated word2

Convert D-floating to truncated longword2

Convert G-floating to truncated G-floating

Convert G-floating to truncated word2

Convert G-floating to truncated longword2

Convert H-floating to truncated H-floating 1
•
3

Convert H-floating to truncated word2

Convert H-floating to truncated longword2

Convert F-floating to truncated word2

Convert F-floating to truncated longword2

Bitwise Inclusive OR Operator Routines

MTH$110R

MTH$JIOR

Bitwise inclusive OR of two word arguments

Bitwise inclusive OR of two longword arguments

Maximum Value Routines

MTH$AIMAXO

MTH$AJMAXO

MTH$1MAXO

MTH$JMAXO

MTH$AMAX1

MTH$DMAX1

MTH$GMAX1

MTH$HMAX1

MTH$1MAX1

MTH$JMAX1

F-floating maximum of n word arguments

F-floating maximum of n longword arguments

Word maximum of n word arguments

Longword maximum of n longword arguments

F-floating maximum of n F-floating arguments2

D-floating maximum of n D-floating arguments

G-floating maximum of n G-floating arguments

H-floating maximum of n H-floating arguments 1

Word maximum of n F-floating arguments2

Longword maximum of n F-floating arguments2

1 Returns value to the first argument; value exceeds 64 bits.

2 1nteger overflow exceptions can occur.

3Floating-point overflow exceptions can occur.

Introduction to MTH$
1.6 Routines Not Documented in the MTH$ Reference Section

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point Function

Minimum Value Routines

MTH$AIMINO

MTH$AJMINO

MTH$1MINO

MTH$JMINO

MTH$AMIN1

MTH$0MIN1

MTH$GMIN1

MTH$HMIN1

MTH$1MIN1

MTH$JMIN1

Remainder Routines

MTH$AMOO

MTH$0MOO

MTH$GMOO

MTH$HMOO

MTH$1MOO

MTH$JMOO

F-floating minimum of n word arguments

F-floating minimum of n longword arguments

Word minimum of n word arguments

Longword minimum of n longword arguments

F-floating minimum of n F-floating arguments2

0-floating minimum of n 0-floating arguments

G-floating minimum of n G-floating arguments

H-floating minimum of n H-floating arguments 1

Word minimum of n F-floating arguments2

Longword minimum of n F-floating arguments2

Remainder of two F-floating arguments, arg 1 /arg23

Remainder of two 0-floating arguments, arg 1 /arg23

Remainder of two G-floating arguments, arg 1 /arg23

Remainder of two H-floating arguments, arg 1 /arg21
'3

Remainder of two word arguments, arg 1 /arg25

Remainder of two longword arguments, arg 1 /arg25

Floating-point Conversion to Nearest Value Routines

MTH$ANINT

MTH$0NINT

MTH$110NNT

MTH$JIONNT

MTH$GNINT

MTH$11GNNT

MTH$JIGNNT

MTH$HNINT

Convert F-floating to nearest F-floating integer

Convert 0-floating to nearest 0-floating integer3

Convert 0-floating to nearest word integer

Convert 0-floating to nearest longword integer

Convert G-floating to nearest G-floating integer3

Convert G-floating to nearest word integer2

Convert G-floating to nearest longword integer2

Convert H-floating to nearest H-floating integer 1

1 Returns value to the first argument; value exceeds 64 bits.

21nteger overflow exceptions can occur.

3Floating-point overflow exceptions can occur.

5Divide-by-zero exceptions can occur.

1-7

Introduction to MTH$
1.6 Routines Not Documented in the MTH$ Reference Section

1-8

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point

MTH$11HNNT

MTH$JIHNNT

MTH$1NINT

MTH$JNINT

Function

Convert H-floating to nearest word integer2

Convert H-floating to nearest longword integer2

Convert F-floating to nearest word integer2

Convert F-floating to nearest longword integer3
•
6

Bitwise Complement Operator Routines

MTH$1NOT

MTH$JNOT

Bitwise complement of word argument

Bitwise complement of longword argument

Floating-point Multiplication Routines

MTH$DPROD

MTH$GPROD

D-floating product of two F-floating arguments3

G-floating product of two F-floating arguments3

Bitwise Shift Operator Routines

MTH$11SHFT

MTH$JISHFT

Bitwise shift of word

Bitwise shift of longword

Floating-point Sign Function Routines

MTH$SGN

MTH$SIGN

MTH$DSIGN

MTH$GSIGN

MTH$HSIGN

F- or D-floating sign function

F-floating transfer of sign of y to sign of x

D-floating transfer of sign of y to sign of x

G-floating transfer of sign of y to sign of x

H-floating transfer of sign of y to sign of x 1

1 Returns value to the first argument; value exceeds 64 bits.

2 Integer overflow exceptions can occur.

3 Floating-point overflow exceptions can occur.

6Returns contents of RO if a negative argument is input.

1.7

1.7.1

1.7.2

Introduction to MTH$
1.6 Routines Not Documented in the MTH$ Reference Section

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point

MTH$11SIGN

MTH$JISIGN

Function

Word transfer of sign of y to sign of x

Longword transfer of sign of y to sign of x

Conversion of Double to Single Floating-point Routines

MTH$SNGL

MTH$SNGLG

Convert D-floating to F-floating (rounded)3

Convert G-floating to F-floating (rounded)3
•
4

3 Floating-point overflow exceptions can occur.

4Floating-point underflow exceptions can occur.

Examples of Calls to Run-Time Library Mathematics Routines

BASIC Example
The following BASIC program uses the H-floating data type. BASIC also
supports the D-floating, F-floating and G-floating data types, but does not
support the complex data types.

10 !+
! Sample program to demonstrate a call to MTH$HEXP from BASIC.
!-

EXTERNAL SUB MTH$HEXP (HFLOAT, HFLOAT)

DECLARE HFLOAT X,Y ! X and Y are H-floating
DIGITS$ = '###.#################################'
X = '1.2345678901234567891234567892'H
CALL MTH$HEXP (Y,X)
A$ = 'MTH$HEXP of ' + DIGITS$ + ' is ' + DIGITS$
PRINT USING A$, X, Y
END

COBOL Example

The output from this program is as follows:

MTH$HEXP of 1.234567890123456789123456789200000
is 3.436893084346008004973301321342110

The following COBOL program uses the F-floating and D-floating data types.
COBOL does not support the G-floating and H-floating data types or the
complex data types.

This COBOL program calls MTH$EXP and MTH$DEXP.

1-9

1.7.3

Introduction to MTH$
1 . 7 Examples of Calls to Run-Time Library Mathematics Routines

IDENTIFICATION DIVISION.
PROGRAM-ID. FLOATING_POINT.

*
* Calls MTH$EXP using a Floating Point data type.
* Calls MTH$DEXP using a Double Floating Point data type.

*
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FLOAT_PT COMP-1.
01 ANSWER_F COMP-1.
01 DOUBLE_PT COMP-2.
01 ANSWER_D COMP-2.
PROCEDURE DIVISION.
PO.

MOVE 12.34 TO FLOAT_PT.
MOVE 3.456 TO DOUBLE_PT.

CALL "MTH$EXP" USING BY REFERENCE FLOAT_PT GIVING ANSWER_F.
DISPLAY" MTH$EXP of ". FLOAT_PT CONVERSION, " is",

ANSWER_F CONVERSION.

CALL "MTH$DEXP" USING BY REFERENCE DOUBLE_PT GIVING ANSWER_D.
DISPLAY" MTH$DEXP of ", DOUBLE_PT CONVERSION, " is ".

STOP RUN.
ANSWER_D CONVERSION .

The output from this example program is as follows:

MTH$EXP of 1.234000E+01 is 2.286620E+05
MTH$DEXP of 3.456000000000000E+OO is
3.168996280537917E+01

FORTRAN Examples

[I C+

The first two FORTRAN programs below use the D-floating and H-floating
data types. The third FORTRAN program below uses the F-floating complex
data type. FORTRAN supports the four floating data types and the three
complex data types.

C This FORTRAN program computes exp(x) in
C double precision by using the RTL routine "MTH$DEXP x "·
c
C Declare X,Y and MTH$DEXP as double precision values.
C MTH$DEXP(X) will return a double precision value to variable Y.
c-

REAL*8 X,Y,MTH$DEXP
x = 3.456
Y = MTH$DEXP(X)
WRITE(6,1) X,Y

1 FORMAT(' ','MTH$DEXP(',F20.15,') IS' ,F20.15)
END

1-10

The output generated by this FORTRAN example is as follows:

MTH$DEXP(3.456000000000000) IS
31.689962805379165

Introduction to MTH$
1 . 7 Examples of Calls to Run-Time Library Mathematics Routines

~ C+
C This FORTRAN program computes exp(x) using
C the RTL routine MTH$HEXP. MTH$HEXP is CALLed by
C MTH$HEXP(return_value , argument)
c
C Declare X,Y as H-floating point values.
C Given X MTH$HEXP will return the value of exp(X) in Y by the call
C CALL MTH$HEXP(Y,X).
c-

REAL*16 X,Y
x = 1.2345678901234567891234567892
CALL MTH$HEXP(Y,X)
WRITE(6,1) X,Y

1 FORMAT(' , ,'MTH$HEXP of , ,E35.30,' is ',E35.30)
END

~ C+

This FORTRAN program generates the following output:

MTH$HEXP of .123456789012345678912345678920E+01
is .343689308434600800497330132134E+01

C This FORTRAN program computes the complex log
C of x using the RTL routine MTH$CLOG. This program also demonstrates
C two ways the user can create a complex number.
c
C Declare Z,Z_LOG,MTH$CMPLX, and MTH$CLOG as complex values and R and I
C as real values. MTH$CMPLX takes two real arguments and returns one
C complex number: Z = MTH$CMPLX(R,I) is a complex number with "real"
C part R and "imaginary" part I.
c
C Given a complex number Z, MTH$CLOG(Z) returns the complex natural
C logarithm of Z.
c-

C+

COMPLEX Z,Z_LOG,MTH$CMPLX,MTH$CLOG
REAL*4 R,I
R = 3.142563
I= 7.4367846
Z = MTH$CMPLX(R,I)

C Z is a complex number with real part Rand imaginary part I.
c-

TYPE *• , The complex number z is' ,z
C+
C Compute the natural logarithm of Z = (2,1).
C Directly define the complex number Z.
c-

z = (2.0,1.0)
Z_LOG = MTH$CLOG(Z)
TYPE*·' The complex log of (2,1) is ',Z_LOG
END

The output generated by this program is as follows:

The complex number z is (3.142563,7.436785)
The complex log of (2,1) is
(0.8047190,0.4636476)

1-11

1.7.4

Introduction to MTH$
1 . 7 Examples of Calls to Run-Time Library Mathematics Routines

MACRO Examples

;+

MACRO and BLISS support JSB entry points as well as CALLS and CALLG
entry points. Both MACRO and BLISS support the four floating data types
and the three complex data types.

The MACRO programs below illustrate the use of the CALLS and CALLG
instructions, as well as JSB entry points .

. TITLE EXAMPLE_JSB

; This example calls MTH$DEXP by using a Macro JSB command.
; The JSB command expects RO/R1 to contain the quadword input value X.
; The result of the JSB will be located in RO/R1 .

. EXTRN MTH$DEXP_R6 ;MTH$DEXP is an external routine .

. PSECT DATA, PIC, EXE, NOWRT
X: .DOUBLE 2.0 ; X is 2.0

.ENTRY EXAMPLE_JSB, AM<>

;+

MOVQ X, RO ; X is in registers RO and R1
JSB GAMTH$DEXP_R6 ; The result is returned in RO/R1.
RET
.END EXAMPLE_JSB

This MACRO program generates the following output:

.TITLE EXAMPLE_CALLG

RO <-- 732541EC
R1 <-- ED6EC6A6

That is, MTH$DEXP(2) is 7.3890560989306502

This example calls MTH$HEXP by using a Macro CALLG command.
The CALLG command expects that the address of the return value
Y, the address of the input value X, and the·argument count 2 be
stored in memory; this program stores this information in ARGUMENTS;
The result of the CALLG will be located in RO/R1 .

. EXTRN MTH$HEXP ; MTH$HEXP is an external routine .

. PSECT DATA, PIC, EXE, WRT
ARGUMENTS:

X:
Y:

1-12

.LONG 2

. ADDRESS Y, X

. H_FLOATING 2

.H_FLOATING 0

. ENTRY EXAMPLE_G,
CALLG ARGUMENTS,
RET
.END EXAMPLE_G

AM<>

The CALLG will use two arguments .
The first argument must be the address
receiving the computed value, while
the second argument is used to
compute exp(X) .

x = 2.0
Y is the result, initially set to 0 .

GAMTH$HEXP ; CALLG returns the value to Y.

Introduction to MTH$
1 . 7 Examples of Calls to Run-Time Library Mathematics Routines

;+

The output generated by this MACRO program is as follows:

.TITLE EXAMPLE_CALLS

address of Y <-- D8E64003
<-- 4DDA4B8D
<-- 3A3BDCC3
<-- B68BA206

That is, MTH$HEXP of 2.0 returns
7.38905609893065022723042746057501

This example calls MTH$HEXP by using the Macro CALLS command.
The CALLS command expects the SP to contain the H-floating address of
the return value, the address of the input argument X and the argument
count 2. The result of the CALLS will be located in registers RO-R3 .

. EXTRN MTH$HEXP ; MTH$HEXP is an external routine .

. PSECT DATA, PIC, EXE, WRT
Y: .H_FLOATING 0 Y is the result, initially set to 0.
X: .H_FLOATING 2 X = 2

.ENTRY EXAMPLE_S, AM<>

;+

MOVAL X, -(SP) The address of X is in the SP.
MOVAL Y, -(SP) The address of Y is in the SP
CALLS Y, GAMTH$HEXP The value is returned to the address of Y.
RET
.END EXAMPLE_S

The output generated by this program is as follows:

.TITLE COMPLEX_EX1

address of Y <-- D8E64003
<-- 4DDA4B8D
<-- 3A3BDCC3
<-- B68BA206

That is, MTH$HEXP of 2.0 returns
7.38905609893065022723042746057501

This example calls MTH$CLOG by using a MACRO CALLG command.
To compute the complex natural logarithm of Z = (2.0,1.0) register
RO is loaded with 2.0, the real part of Z, and register R1 is loaded
with 1.0, the imaginary part of Z. The CALLG to MTH$CLOG
returns the value of the natural logarithm of Z in
registers RO and R1. RO gets the real part of Zand R1
gets the imaginary part .

. EXTRN MTH$CLOG

.PSECT DATA, PIC, EXE, NOWRT
ARGS: .LONG 1 The CALLG will use one argument .

. ADDRESS REAL The one argument that the CALLG
uses is the address of the argument
of MTH$CLOG.

REAL: .FLOAT 2 real part of Z is 2.0
!MAG: .FLOAT 1 imaginary part Z is 1.0

.ENTRY COMPLEX_EX1, AM<>
CALLG ARGS, GAMTH$CLOG; MTH$CLOG return the real part of the

complex natural logarithm in RO and
the imaginary part in R1.

RET
.END COMPLEX_EX1

1-13

1.7.5

Introduction to MTH$
1 . 7 Examples of Calls to Run-Time Library Mathematics Routines

;+

This program generates the following output:

RO <--- 0210404E
R1 <--- 63383FED

That is, MTH$CLOG(2.0,1.0) is
(0.8047190,0.4636476)

.TITLE COMPLEX_EX2

This example calls MTH$CLOG by using a MACRO CALLS command.
To compute the complex natural logarithm of Z = (2.0,1.0) register
RO is loaded with 2.0. the real part of z. and register R1 is loaded
with 1.0. the imaginary part of Z. The CALLS to MTH$CLOG
returns the value of the natural logarithm of Z in registers RO
and R1. RO gets the real part of Zand R1 gets the imaginary
part.

MTH$CLOG
DATA. PIC, EXE. NOWRT

REAL:
!MAG:

.EXTRN

.PSECT

.FLOAT

.FLOAT

.ENTRY
MOVAL

2 ; real part of Z is 2.0
1 ; imaginary part Z is 1.0

CALLS

RET

COMPLEX_EX2, ~M<>

REAL. -(SP) SP <-- address of Z. Real part of Z is
in ©(SP) and imaginary part is in
©(SP)+4.

MTH$CLOG return the real part of the
complex natural logarithm in RO and
the imaginary part in R1.

.END COMPLEX_EX2

This MACRO example program generates the following output:

RO <--- 0210404E
R1 <--- 63383FED

That is, MTH$CLOG(2.0,1.0) is
(0.8047190.0.4636476)

PASCAL Examples

D {+}

The following PASCAL programs use the D-floating and H-floating data
types. PASCAL also supports the F-floating and G-floating data types.
PASCAL does not support the complex data types, however.

{ Sample program to demonstrate a call to MTH$DEXP from PASCAL.
{-}

PROGRAM CALL_MTH$DEXP (OUTPUT);

{+}
{ Declare variables used by this program.
{-}

VAR

1-14

X DOUBLE := 3.456;
Y DOUBLE;

{ X,Y are D-floating unless overridden}
{ with /DOUBLE qualifier on compilation }

1.7.6

Introduction to MTH$
1 . 7 Examples of Calls to Run-Time Library Mathematics Routines

{+}
{ Declare the RTL routine used by this program.
{-}

[EXTERNAL.ASYNCHRONOUS] FUNCTION MTH$DEXP (VAR value DOUBLE) DOUBLE; EXTERN;

BEGIN
Y := MTH$DEXP (x);
WRITELN ('MTH$DEXP of ' X:5:3, ' is ', Y:20:16);

END.

The output generated by this PASCAL program is as follows:

MTH$DEXP of 3.456 is· 31.6899656462382318

~ {+}
{ Sample program to demonstrate a call to MTH$HEXP from PASCAL.
{-}

PROGRAM CALL_MTH$HEXP (OUTPUT);

{+}
{ Declare variables used by this program.
{-}

VAR
X QUADRUPLE := 1.2345678901234567891234567892; { X is H-floating }
Y QUADRUPLE; { Y is H-floating }

{+}
{ Declare the RTL routine used by this program.
{-}

[EXTERNAL.ASYNCHRONOUS] PROCEDURE MTH$HEXP (VAR h_exp QUADRUPLE;
value : QUADRUPLE); EXTERN;

BEGIN
MTH$HEXP (Y,X);
WRITELN ('MTH$HEXP of ' X:30:28, ' is ', Y:35:33);

END.

This PASCAL program generates the following output:

MTH$DEXP of 3.456 is 31.6899656462382318

PL/I Examples
The following PL/I programs use the D-floating and H-floating data types to
test entry points. PL/I also supports the F-floating and G-floating data types.
PL/I does not support the complex data types, however.

1-15

Introduction to MTH$
1 . 7 Examples of Calls to Run-Time Library Mathematics Routines

*
* This program tests a MTH$D entry point

*
*/
TEST: PROC OPTIONS (MAIN) ;

DCL (MTH$DEXP)
ENTRY (FLOAT(53)) RETURNS (FLOAT(53));

DCL OPERAND FLOAT(53);
DCL RESULT FLOAT(53);

/*** Begin test ***/
OPERAND = 3.456;
RESULT= MTH$DEXP(OPERAND);

*
*
*

PUT EDIT ('MTH$DEXP of ',OPERAND, ' is ', RESULT)(A(12),F(5,3),A(4),F(20,15));

END TEST;

*
*
*
*

The output generated by this PL/I program is as follows:

MTH$DEXP of 3.456 is 31.689962805379165

This program tests a MTH$H entry point.
Note that in the PL/I statement below, the /G-float switch
is needed to compile both G- and H-floating point MTH$ routines.

TEST: PROC OPTIONS (MAIN) ;

DCL (MTH$HEXP)
ENTRY (FLOAT (113), FLOAT (113))

DCL OPERAND FLOAT (113);
DCL RESULT FLOAT (113);

/*** Begin test ***/
OPERAND= 1.234578901234567891234567892;
CALL MTH$HEXP(RESULT,OPERAND);

*
*
*

PUT EDIT ('MTH$HEXP of ',OPERAND, 'is ', RESULT) (A(12),F(29,27),A(4),F(29,27));

end test;

1-16

To run this program, you must use the following DCL commands:

$ PLI/G_FLOAT EXAMPLE
$ LINK EXAMPLE
$ RUN EXAMPLE

This program generates the following output:

MTH$HEXP of 1.234578901234567891234567892 is
3.436930928565989790506225633

MTH$ Reference Section
This section provides detailed descriptions of the routines provided by the
VMS RTL Mathematics (MTH$) Facility.

MTH$xACOS

MTH$xACOS Arc Cosine of Angle Expressed in
Radians

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the cosine of an angle, the Arc Cosine of Angle Expressed in
Radians routine returns that angle (in radians).

MTH$ACOS cosine
MTH$DACOS cosine
MTH$GACOS cosine
Each of the above three formats accepts as input one of the floating-point
types.

MTH$ACOS_R4
MTH$DACQS_R7
MTH$GACQS_R7
Each of the above three JSB entries accepts as input one of the floating-point
types.

VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: write only
mechanism: by value

Angle in radians. The angle returned will have a value in the range

0 ~angle~ 7r

MTH$ACOS returns an F-floating number. MTH$DACOS returns. a D­
floating number. MTH$GACOS returns a G-floating number.

cosine
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference

The cosine of the angle whose value (in radians) is to be returned. The cosine
argument is the address of a floating-point number that is this cosine. The
absolute value of cosine must be less than or equal to 1. For MTH$ACOS,
cosine specifies an F-floating number. For MTH$DACOS, cosine specifies a
D-floating number. For MTH$GACOS, cosine specifies a G-floating number.

MTH-3

MTH$xACOS

DESCRIPTION

CONDITION
VALUES
SIGNALED

EXAMPLES

D 100 !+

The angle in radians whose cosine is X is computed as:

Value of
Cosine

0

1

,.-l

O<X< 1

-1<x<0
1 < IXI

Value Returned

7r/2

0

zAT AN(zSQRT(l - X 2
)/ X), where zATAN and zSORT are the

Math Library arc tangent and square root routines, respectively,
of the appropriate data type

zAT AN(zSQRT(l - X 2
)/ X) + 7r

The error MTH$_1NV ARGMA T is signaled

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HACOS.

SS$_ROPRAND

MTH$_1NV ARGMA T

Reserved operand. The MTH$xACOS routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit of
one and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Invalid argument. The absolute value of cosine
is greater than 1. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L _MCH _SA VRO /R 1. The
result is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/R1.

! This BASIC program demonstrates the use of
! MTH$ACOS.
!-

EXTERNAL REAL FUNCTION MTH$ACOS
DECLARE REAL COS_VALUE, ANGLE

300 INPUT "Cosine value between -1 and +1 "; COS_VALUE
400 IF (COS_VALUE < -1) OR (COS_VALUE > 1)

THEN PRINT "Invalid cosine value"
GOTO 300

500 ANGLE = MTH$ACOS(COS_VALUE)
PRINT "The angle with that cosine is 11

• ANGLE; "radians"
32767 END

MTH-4

MTH$xACOS

This BASIC program prompts for a cosine value and determines the angle
that has that cosine. The output generated by this program is as follows:

$ RUN ACOS
Cosine value betwen -1 and +1 ? .5
The angle with that cosine is 1.0472 radians

~ PROGRAM GETANGLE(INPUT, OUTPUT);

{+}
{ This PASCAL program uses MTH$ACOS to determine
{ the angle which has the cosine given as input.
{-}

VAR
COS : REAL;

FUNCTION MTH$ACOS(COS REAL) REAL;
EXTERN;

BEGIN

END.

WRITE('Cosine value between -1 and +1: ');
READ (COS);
WRITELN('The angle with that cosine is', MTH$ACOS(COS),
'radians');

This PASCAL program prompts for a cosine value and determines the angle
that has that cosine. The output generated by this program is as follows:

$ RUN ACOS
Cosine value between -1 and +1: .5
The angle with that cosine is 1.04720E+OO radians

MTH-5

MTH$xACOSD

MTH$xACOSD Arc Cosine of Angle Expressed in
Degrees

FORMAT

jsb entries

RETURNS

ARGUMENTS

MTH-6

Given the cosine of an angle, the Arc Cosine of Angle Expressed in
Degrees routine returns that angle (in degrees).

MTH$ACOSD cosine
MTH$DACOSD cosine
MTH$GACOSD cosine
Each of the above formats accepts as input one of the floating-point types.

MTH$ACOSD_R4
MTH$DACOSD_R7
MTH$GACOSD_R7
Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, O_floating, G_floating
access: write only
mechanism: by value

Angle in degrees. The angle returned will have a value in the range

0 ~ angle ~ 180

MTH$ACOSD returns an F-floating number. MTH$DACOSD returns a
D-floating number. MTH$GACOSD returns a G-floating number.

cosine
VMS usage: floating_point
type: f _floating, G_floating, D_floating
access: read only
mechanism: by reference

Cosine of the angle whose value (in degrees) is to be returned. The cosine
argument is the address of a floating-point number that is this cosine. The
absolute value of cosine must be less than or. equal to 1. For MTH$ACOSD,
cosine specifies an F-floating number. For MTH$DACOSD, cosine specifies
a D-floating number. For MTH$GACOSD, cosine specifies a G-floating
number.

DESCRIPTION

CONDITION
VALUES
SIGNALED

EXAMPLE

MTH$xACOSD

The angle in degrees whose cosine is X is computed as:

Value of
Cosine

0

1

-1

O<X< 1

-1<x<0

1 < IXI

Angle Returned

90

0

180

zAT AN D(zSQRT(l - X 2
)/ X), where zAT AND and zSQRT

are the Math Library arc tangent and square root routines,
respectively, of the appropriate data type

zAT AN D(zSQRT(l - X 2
)/ X) + 180

The error MTH$_1NV ARGMA T is signaled

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HACOSD.

SS$_ROPRAND

MTH$_1NV ARGMA T

Reserved operand. The MTH$xACOSD routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit of
one and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Invalid argument. The absolute value of cosine
is greater than 1. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/R1. The
result is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/R1.

PROGRAM ACOSD(INPUT,OUTPUT);

{+}
{ This PASCAL program demonstrates the use of
{ MTH$ACOSD.
{-}

FUNCTION MTH$ACOSD(COS REAL): REAL; EXTERN;

VAR
COSINE : REAL;
RET_STATUS : REAL;

BEGIN
COSINE := 0.5;
RET_STATUS := MTH$ACOSD(COSINE);
WRITELN('The angle, in degrees, is: ' RET_STATUS);

END.

MTH-7

MTH$xACOSD

The output generated by this PASCAL example program is as follows:

The angle, expressed in degrees, is: 6.00000E+01

MTH-8

MTH$xASIN

MTH$xASIN Arc Sine in Radians

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the sine of an angle, the Arc Sine in Radians routine returns that
angle (in radians).

MTH$ASI N sine
MTH$DASIN sine
MTH$GASIN sine

Each of the above formats accepts as input one of the floating-point types.

MTH$ASIN_R4
MTH$DASIN_R7
MTH$GASIN_R7
Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: write only
mechanism: by value

Angle in radians. The angle returned will have a value in the range

-7r /2 ~ angle ~ 7r /2

MTH$ASIN returns an F-floating number. MTH$DASIN returns a D-floating
number. MTH$GASIN returns a G-floating number.

sine
VMS usage: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference

The sine of the angle whose value (in radians) is to be returned. The sine
argument is the address of a floating-point number that is this sine. The
absolute value of sine must be less than or equal to 1. For MTH$ASIN, sine
specifies an F-floating number. For MTH$DASIN, sine specifies a D-floating
number. For MTH$GASIN, sine specifies a G-floating number.

MTH-9

MTH$xASIN

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH-10

The angle in radians whose sine is X is computed as:

Value of Sine

0

1

-1

0<IXI<1

1 < IXI

Angle Returned

0

7r/2

-Tr/2

zATAN(X/zSQRT(l - X 2
)), where zATAN and zSQRT

are the Math Library arc tangent and square root routines,
respectively, of the appropriate data type

The error MTH$_1NV ARGMA T is signaled

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HASIN.

SS$_ROPRAND

MTH$_1NV ARGMA T

Reserved operand. The MTH$xASIN routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Invalid argument. The absolute value of sine
is greater than 1 . LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/R1. The
result is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/R1.

MTH$xASIND

MTH$xASIND Arc Sine in Degrees

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the sine of an angle, the Arc Sine in Degrees routine returns that
angle (in degrees).

MTH$ASIND sine
MTH$DASIND sine
MTH$GASIND sine

Each of the above formats accepts as input one of the floating-point types.
r

MTH$ASI N D_R4
MTH$DASIND_R7
MTH$GASIND_R7
Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, O_floating, G_floating
access: write only
mechanism: by value

Angle in degrees. The angle returned will have a value in the range

-90 ::; angle ::; 90

MTH$ASIND returns an F-floating number. MTH$DASIND returns a D­
floating number. MTH$GASIND returns a G-floating number.

sine
VMS usage: floating_point
type: · f _floating, O_floating, G_floating
access: read only
mechanism: by reference

Sine of the angle whose value (in degrees) is to be returned. The sine
argument is the address of a floating-point number that is this sine. The
absolute value of sine must be less than or equal to 1. For MTH$ASIND,
sine specifies an F-floating number. For MTH$DASIND, sine specifies a
D-floating number. For MTH$GASIND, sine specifies a G-floating number.

MTH-11

MTH$xASIND

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH-12

The angle in degrees whose sine is X is computed as:

Value of Sine

0

1

-1

0 < IXI < 1

1 < IXI

Value Returned

0

90

-90

zATAND(X/zSQRT(l - X 2
)), where zATAND and zSORT

are the Math Library arc tangent and square root routines,
respectively, of the appropriate data type

The error MTH$_1NV ARGMA T is signaled

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HASIND.

SS$_RQPRAND

MTH$_1NV ARGMA T

Reserved operand. The MTH$xASIND routine
encountered a floating point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit of
one and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Invalid argument. The absolute value of sine
is greater than 1 . LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/R 1. The
result is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L _MCH_SA VRO /R 1.

MTH$xATAN

MTH$xATAN Arc Tangent in Radians

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the tangent of an angle, the Arc Tangent in Radians routine returns
that angle (in radians).

MTH$A TAN tangent
MTH$DATAN tangent
MTH$GATAN tangent
Each of the above formats accepts as input one of the floating-point types.

MTH$ATAN_R4
MTH$DATAN_R7
MTH$GATAN_R7
Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: write only
mechanism: by value

Angle in radians. The angle returned will have a value in the range

-Jr /2 ~ angle ~ 7r /2

MTH$ATAN returns an F-floating number. MTH$DATAN returns a D­
floating number. MTH$GATAN returns a G-floating number.

tangent
VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: read only
mechanism: by reference

The tangent of the angle whose value (in radians) is to be returned. The
tangent argument is the address of a floating-point number that is this
tangent. For MTH$ATAN, tangent specifies an F-floating number. For
MTH$DATAN, tangent specifies a D-floating number. For MTH$GATAN,
tangent specifies a G-floating number.

MTH-13

MTH$xATAN

DESCRIPTION

CONDITION
VALUE
SIGNALED

MTH-14

In radians, the computation of the arc tangent function is based on the
following identities:

arctan(X) = X - X 3 /3 + X5 /5 - X 7 /7 + ...
arctan(X) = X + X * Q(X2

),

where Q(Y) = -Y/3 + Y 2 /5- Y3 /7 + ...
arctan(X) = X * P(X2

),

where P(Y) = 1- Y/3 +·Y2 /5 - Y 3 /7 + ...

arctan(X) = 7r/2 - arctan(l/X)

arctan(X) = arctan(A) + arctan((X - A)/(1 +A* X))
for any real A

The angle in radians whose tangent is X is computed as:

Value of X

o:::;X::-;3/32

3/32 < x:::;11

11<X

X<O

Angle Returned

X+X*Q(X2
)

ATAN(A) + V * (P(V 2
)), where A and ATAN(A) are

chosen by table lookup and V = (X -A)/(1 +A* X)

7r/2 - W * (P(W 2
)) where W = 1/X

-zAT AN(IXI)

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HATAN.

SS$_ROPRAND Reserved operand. The MTH$xA TAN routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH$xATAND

MTH$xATAND Arc Tangent in Degrees

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the tangent of an angle, the Arc Tangent in Degrees routine returns
that angle (in degrees).

MTH$ATAND tangent
MTH$DATAND tangent
MTH$GATAND tangent
Each of the above formats accepts as input one of the floating-point types.

MTH$ATAND_R4
MTH$DATAND_R7
MTH$GATAND_R7
Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, O_floating, G_floating
access: write only
mechanism: by value

Angle in degrees. The angle returned will have a value in the range

-90 ~ angle ~ 90

MTH$ATAND returns an F-floating number. MTH$DATAND returns a
D-floating number. MTH$GATAND returns a G-floating number.

tangent
VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: read only
mechanism: by reference

The tangent of the angle whose value (in degrees) is to be returned. The
tangent argument is the address of a floating-point number that is this
tangent. For MTH$ATAND, tangent specifies an F-floating number. For
MTH$DATAND, tangent specifies a D-floating number. For MTH$GATAND,
tangent specifies a G-floating number.

MTH-15

MTH$xATAND

DESCRIPTION

CONDITION
VALUE
SIGNALED

MTH-16

The computation of the arc tangent function is based on the following
identities:

arctan(X) = (180/'rr) * (X - X 3 /3 + X 5 /5 - X 7 /7 + ...)
arctan(X) = 64 * X + X * Q(X2

),

where Q(Y) = 180/7r * [(1 - 64 * 7r /180)] - Y /3 + Y 2 /5 - Y 3 /7 + Y 4 /9

arctan(X) = X * P(X2
),

where P(Y) = 180/7r * [1 - Y /3 + Y 2 /5 - Y 3 /7 + Y 4 /9 ...]

arctan(X) = 90 - arctan(l/ X)

arctan(X) = arctan(A) + arctan((X - A)/(1 +A* X))

The angle in degrees whose tangent is Xis computed as:

Tangent

X9/32

3/32 < X:Sll

ll<X

X<O

Angle Returned

64*X+X*Q(X2
)

AT AN D(A) + V * P(V2
), where A and ATAND(A) are

chosen by table lookup and V = (X - A)/(1 +A* X)

90- W * (P(W2
)), where W = 1/X

-zATAND(IXI)

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HATAND.

SS$_ROPRAND Reserved operand. The MTH$xA T AND routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH$xATAN2

MTH$xATAN2 Arc Tangent in Radians with Two
Arguments

FORMAT

RETURNS

ARGUMENTS

Given sine and cosine, the Arc Tangent in Radians with Two Arguments
routine returns the angle (in radians) whose tangent is given by the
quotient of sine and cosine, (sine/cosine).

MTH$ATAN2 sine ,cosine
MTH$DATAN2 sine ,cosine
MTH$GATAN2 sine ,cosine
Each of the above formats accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, O_floating, G_floating
access: write only
mechanism: by value

Angle in radians. MTH$ATAN2 returns an F-floating number.
MTH$DATAN2 returns a D-floating number. MTH$GATAN2 returns a
G-floating number.

sine
VMS usage: floating_point
type: f _floating, O_floating, G_floating
access: read only
mechanism: by reference

Dividend. The sine argument is the address of a floating.;point number that
is this dividend. For MTH$ATAN2, sine specifies an F-floating number. For
MTH$DATAN2, sine specifies a D-floating number. For MTH$GATAN2, sine
specifies a G-floating number.

cosine
VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: read only
mechanism: by reference

Divisor. The cosine argument is the address of a floating-point number that
is this divisor. For MTH$ATAN2, cosine specifies an F-floating number. For
MTH$DATAN2, cosine specifies a D-floating number. For MTH$GATAN2,
cosine specifies a G-floating number.

MTH-17

MTH$xATAN2

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH-18

The angle in radians whose tangent is Y /Xis computed as follows, where f is
defined in the description of MTH$zCOSH.

Value of Input Arguments

X = 0 or Y/X > 211+
11

X > 0 and Y/X$. 21!+11

X < 0 and Y/X$. 21J+1l

Angle Returned

7r /2 * (signY)

zATAN(Y/X)

1r * (signY) + zATAN(Y/X)

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HATAN2.

SS$_RQPRAND

MTH$_1NV ARGMA T

Reserved operand. The MTH$xA T AN2 routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Invalid argument. Both cosine and sine are zero.
LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector
CHF$L _MCH _SA VRO /R 1 . The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF$L_
MCH_SAVRO/R 1.

MTH$xATAN 02

MTH$xATAND2 Arc Tangent in Degrees with
Two Arguments

FORMAT

RETURNS

ARGUMENTS

Given sine and cosine, the Arc Tangent in Degrees with Two Arguments
routine returns the angle (in degrees) whose tangent is given by the
quotient of sine and cosine, (sine/cosine).

MTH$ATAND2 sine ,cosine
MTH$DATAND2 sine ,cosine
MTH$GATAND2 sine ,cosine
Each of the above formats accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, O_floating, G_floating
access: write only
mechanism: by value

Angle (in degrees). MTH$ATAND2 returns an F-floating number.
MTH$DATAND2 returns a D-floating number. MTH$GATAND2 returns
a G-floating number.

sine
VMS usage: floating_point
type: f _floating, O_floating, G_floating
access: read only
mechanism: by reference

Dividend. The sine argument is the address of a floating-point number that
is this dividend. For MTH$ATAND2, sine specifies an F-floating number. For
MTH$DATAND2, sine specifies a D-floating number. For MTH$GATAND2,
sine specifies a G-floating number.

cosine
VMS usage: floating_point
type: F _floating, O_floating, G_floating
access: read only
mechanism: by reference

Divisor. The cosine argument is the address of a floating-point number
that is this divisor. For MTH$ATAND2, cosine specifies an F-floating
number. For MTH$DATAND2, cosine specifies a D-floating number. For
MTH$GATAND2, cosine specifies a G-floating number.

MTH-19

MTH$xATAND2

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH-20

The angle in degrees whose tangent is Y /X is computed below and where f is
defined in the description of MTH$zCOSH.

Value of Input Arguments

X = 0 or Y/X > 2U+ll

X > 0 and Y/X:::; 2U+ll

X < 0 and Y/X:::; 2lf+l)

Angle Returned

90 * (signY)

zAT AN D(Y / X)

180 * (signY) + zAT AN D(Y / X)

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HATAND2.

SS$_ROPRAND

MTH$_1NV ARGMA T

Reserved operand. The MTH$xA T AND2 routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Invalid argument. Both cosine and sine are zero.
LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector
CHF$L _MCH _SA VRO /R 1. The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF$L_
MCH_SAVRO/R1.

MTH$xATANH

MTH$xATANH Hyperbolic Arc Tangent

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

Given the hyperbolic tangent of an angle, the Hyperbolic Arc Tangent
routine returns the hyperbolic arc tangent of that angle.

MTH$ATANH hyperbolic-tangent
MTH$DATANH hyperbolic-tangent
MTH$GATANH hyperbolic-tangent
Each of the above formats accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: write only
mechanism: by value

The hyperbolic arc tangent of hyperbolic-tangent. MTH$ATANH returns
an F-floating number. MTH$DATANH returns a D-floating number.
MTH$GATANH returns a G-floating number.

hyperbolic-tangent
VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: read only
mechanism: by reference

Hyperbolic tangent of an angle. The hyperbolic-tangent argument is the
address of a floating-point number that is this hyperbolic tangent. For
MTH$ATANH, hyperbolic-tangent specifies an F-floating number. For
MTH$DATANH, hyperbolic-tangent specifies a D-floating number. For
MTH$GATANH, hyperbolic-tangent specifies a G-floating number.

The hyperbolic arc tangent function is computed as follows:

Value of x

IXI < 1

IXl2::1

Value Returned

zAT AN H(X) = zLOG((X + 1)/(X - 1))/2

An invalid argument is signaled

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HATANH.

MTH-21

MTH$xATANH

CONDITION
VALUES
SIGNALED

MTH-22

SS$_ROPRAND

MTH$_1NV ARGMA T

Reserved operand. The MTH$xAT ANH routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Invalid argument: IXl~l. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/R1. The
result is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/R1.

MTH$CxABS

MTH$CxABS Complex Absolute Value

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

The Complex Absolute Value routine returns the absolute value of a
complex number (r,i).

MTH$CABS complex-number
MTH$CDABS complex-number
MTH$CGABS complex-number
Each of the above three formats accepts as input one of the three floating­
point complex types.

VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: write only
mechanism: by value

The absolute value of a complex number. MTH$CABS returns an F-floating
number. MTH$CDABS returns a D-flo'1ting number. MTH$CGABS returns a
G-floating number.

complex-number
VMS usage: complex_number
type: f _floating complex, D_floating complex, G_floating

complex
access: read only
mechanism: by reference

A complex number (r,i), where r and i are both floating-point complex values.
The complex-number argument is the address of this complex number. For
MTH$CABS, complex-number specifies an F-floating complex number. For
MTH$CDABS, complex-number specifies a D-floating complex number. For
MTH$CGABS, complex-number specifies a G-floating complex number.

The complex absolute value is computed as follows, where MAX is the larger
of lrl and Iii, and MIN is the smaller of lrl and Iii.

result= MAX* SQRT((MIN/MAX)2 +1)

MTH-23

MTH$CxABS

CONDITION
VALUES
SIGNALED

EXAMPLES

iJ C+

SS$_ROPRAND

MTH$_FLOOVEMA T

Reserved operand. The MTH$CxABS routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in Math Library when both
r and i are large.

C This FORTRAN example forms the absolute value of an
C F-f loating complex number using MTH$CABS and the
C FORTRAN random number generator RAN.
c
C Declare Z as a complex value and MTH$CABS as a REAL*4 value.
C MTH$CABS will return the absolute value of Z: Z_NEW = MTH$CABS(Z).
c-

C+

COMPLEX Z
COMPLEX CMPLX
REAL*4 Z_NEW,MTH$CABS
INTEGER M
M = 1234567

C Generate a random complex number with the FORTRAN generic CMPLX.
c-

Z = CMPLX(RAN(M),RAN(M))

C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
c-

C+

TYPE *· ' The complex number z is' ,z
TYPE*· ' It has real part' ,REAL(Z), 'and imaginary part' ,AIMAG(Z)
TYPE *·

C Compute the complex absolute value of Z.
c-

MTH-24

Z_NEW = MTH$CABS(Z)
TYPE*· 'The complex absolute value of',z,' is',Z_NEW
END

This example uses an F-floating complex number for complex-number. The
output of this FORTRAN example is as follows:

The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402

The complex absolute value of (0.8535407,0.2043402) is 0.8776597

~ C+
C This FORTRAN example forms the absolute
C value of a G-floating complex number using
C MTH$CGABS and the FORTRAN random number
C generator RAN.
c
C Declare Z as a complex value and MTH$CGABS as a
C REAL*8 value. MTH$CGABS will return the absolute
C value of Z: Z_NEW = MTH$CGABS(Z).
c-

COMPLEX*16 Z
REAL*8 Z_NEW,MTH$CGABS

C+
C Generate a random complex number with the FORTRAN
C generic CMPLX.
c-

C+

z = (12.34567890123,45.536376385345)
TYPE*· 'The complex number z is',z
TYPE *, ' '

C Compute the complex absolute value of Z.
c-

Z_NEW = MTH$CGABS(Z)
TYPE*· 'The complex absolute value of',z,' is' ,Z_NEW
END

MTH$CxABS

This FORTRAN example uses a G-floating complex number for complex­
number. Because this example uses a G-floating number, it must be compiled
as follows:

$ FORTRAN/G MTHEX.FOR

Notice the difference in the precision of the output generated:

The complex number z is (12.3456789012300,45.5363763853450)
The complex absolute value of (12.3456789012300,45.5363763853450) is
47.1802645376230

MTH-25

MTH$CCOS

MTH$CCOS

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH-26

Cosine of a Complex Number
(F-floating Value)

The Cosine of a Complex Number (F-floating Value) routine returns the
cosine of a complex number as an F-floating value.

MTH$CCOS complex-number

VMS usage: complex_number
type: F _floating complex
access: write only
mechanism: by value

The complex cosine of the complex input number. MTH$CCOS returns an
F-floating complex number.

complex-number
VMS usage: complex_number
type: F _floating complex
access: read only
mechanism: by reference

A complex number (r,i) where r and i are floating-point numbers. The
complex-number argument is the address of this complex number. For
MTH$CCOS, complex-number specifies an F-floating complex number.

The complex cosine is calculated as follows:

result= (COS(r) * COSH(i), -SIN(r) * SINH(i))

The routine descriptions for the D- and G-floating point versions of this
routine are listed alphabetically under MTH$CxCOS.

SS$_ROPRAND

MTH$_FLOOVEMA T

Reserved operand. The MTH$CCOS routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in Math Library: the
absolute value of i is greater than about 88.029
for F-floating values.

EXAMPLE

C+
C This FORTRAN example forms the complex
C cosine of an F-f loating complex number using
C MTH$CCOS and the FORTRAN random number
C generator RAN.
c
C Declare Z and MTH$CCOS as complex values.
C MTH$CCOS will return the cosine value of
C Z: Z_NEW = MTH$CCOS(Z)
c-

C+

COMPLEX Z,Z_NEW,MTH$CCOS
COMPLEX CMPLX
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic CMPLX.
c-

Z = CMPLX(RAN(M),RAN(M))

C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
c-

C+

TYPE *• ' The complex number z is' ,z
TYPE *· ' It has real part' ,REAL(Z), 'and imaginary part' ,AIMAG(Z)
TYPE *,

C Compute the complex cosine value of Z.
c-

Z_NEW = MTH$CCOS(Z)
TYPE *· ' The complex cosine value of' ,z,' is' ,Z_NEW
END

MTH$CCOS

This FORTRAN example demonstrates the use of MTH$CCOS, using the
MTH$CCOS entry point. The output of this program is as follows:

The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402
The complex cosine value of (0.8535407,0.2043402) is (0.6710899,-0.1550672)

MTH-27

MTH$CxCOS

MTH$CxCOS Cosine of a Complex Number

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

MTH-28

The Cosine of a Complex Number routine returns the cosine of a complex
number.

MTH$CDCOS
MTH$CGCOS

complex-cosine ,complex-number
complex-cosine ,complex-number

Each of the above formats accepts as input one of the floating-point complex
types.

None.

complex-cosine
VMS usage: complex_number
type: O_floating complex, G_floating complex
access: write only
mechanism: by reference

Complex cosine of the complex-number. The complex cosine routines that
have D-floating and G-floating complex input values write the address of
the complex cosine into the complex-cosine argument. For MTH$CDCOS,
the complex-cosine argument specifies a D-floating complex number. For
MTH$CGCOS, the complex-number argument specifies a G-floating complex
number.

complex-number
VMS usage: complex_number
type: O_floating complex, G_floating complex
access: read only
mechanism: by reference

A complex number (r,i) where r and i are floating-point numbers. The
complex-number argument is the address of this complex number. For
MTH$CDCOS, complex-number specifies a D-floating complex number. For
MTH$CGCOS, complex-number specifies a G-floating complex number.

The complex cosine is calculated as follows:

result= (COS(r) * COSH(i), -SIN(r) * SINH(i))

CONDITION
VALUES
SIGNALED

EXAMPLE

C+

SS$_ROPRAND

MTH$_FLOOVEMA T

C This FORTRAN example forms the complex
C co.sine of a D-floating complex number using
C MTH$CDCOS and the FORTRAN random number
C generator RAN.
c
C Declare Z and MTH$CDCOS as complex values.
C MTH$CDCOS will return the cosine value of
C Z: Z_NEW = MTH$CDCOS(Z)
c-

C+

COMPLEX*16 Z,Z_NEW,MTH$CDCOS
COMPLEX*16 DCMPLX
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic DCMPLX.
c-

Z = DCMPLX(RAN(M) ,RAN(M))

C+

MTH$CxCOS

Reserved operand. The MTH$CxCOS routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in Math Library: the
absolute value of i is greater than about 88.029
for F-floating and D-floating values or greater than
709.089 for G-floating values.

C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
c-

C+

TYPE*· 'The complex number z is',z
TYPE *·

C Compute the complex cosine value of Z.
c-

Z_NEW = MTH$CDCOS(Z)
TYPE *· ' The complex cosine value of' ,z,' is' ,Z_NEW
END

MTH-29

MTH$CxCOS

This FORTRAN example program demonstrates the use of MTH$CxCOS,
using the MTH$CDCOS entry point. Notice the high precision of the output
generated:

The complex number z is (0.8535407185554504,0.2043401598930359)
The complex cosine value of (0.8535407185554504,0.2043401598930359) is

(0.6710899028500762,-0.1550672019621661)

MTH-30

MTH$CEXP

MTH$CEXP Complex Exponential (F-floating
Value)

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Complex Exponential (F-floating Value) routine returns the complex
exponential of a complex number as an F-floating value.

MTH$CEXP complex-number

VMS usage: complex_number
type: F _floating complex
access: write only
mechanism: by value

Complex exponential of the complex input number. MTH$CEXP returns an
F-floating complex number.

complex-number
VMS usage: complex_number
type: f _floating complex
access: read only
mechanism: by reference

Complex number whose complex exponential is to be returned. This complex
number has the form (r,i), where r is the real part and i is the imaginary part.
The complex-number argument is the address of this complex number. For
MTH$CEXP, complex-number specifies an F-floating number.

The complex exponential is computed as follows:

complex - exponent= (EXP(r) * COS(i),EXP(r) * SIN(i))

The routine descriptions for the D- and G-floating point versions of this
routine are listed alphabetically under MTH$CxEXP.

MTH-31

MTH$CEXP

CONDITION
VALUES
SIGNALED

EXAMPLE

C+

SS$_ROPRAND

MTH$_FLOOVEMA T

Reserved operand. The MTH$CEXP routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in Math Library: the
absolute value of r is greater than about 88.029
for F-floating values.

C This FORTRAN example forms the complex exponential
C of an F-f loating complex number using MTH$CEXP
C and the FORTRAN random number generator RAN.
c
C Declare Z and MTH$CEXP as complex values. MTH$CEXP
C will return the exponential value of Z: Z_NEW = MTH$CEXP(Z)
c-

C+

COMPLEX Z,Z_NEW,MTH$CEXP
COMPLEX CMPLX
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic CMPLX.
c-

Z = CMPLX(RAN(M),RAN(M))

C+
C Z is a complex number (r,i) with real part "r"
C and imaginary part "i".
c-

C+

TYPE *· ' The complex number z is' ,z
TYPE *· ' It has real part' ,REAL(Z), 'and imaginary part' ,AIMAG(Z)
TYPE *·

C Compute the complex exponential value of Z.
c-

Z_NEW = MTH$CEXP(Z)
TYPE*· ' The complex exponential value of' ,z,' is' ,Z_NEW
END

This FORTRAN program demonstrates the use of MTH$CEXP as a function
call. The output generated by this example is as follows:

The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402
The complex exponential value of (0.8535407,0.2043402) is

(2.299097,0.4764476)

MTH-32

MTH$CxEXP

MTH$CxEXP Complex Exponential

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Complex Exponential routine returns the complex exponential of a
complex number.

MTH$CDEXP
MTH$CGEXP

complex-exponent ,complex-number
complex-exponent, complex-number

Each of the above formats accepts as input one of the floating-point complex
types.

None.

complex-exponent
VMS usage: complex_number
type: O_floating complex, G_floating complex
access: write only
mechanism: by reference

Complex exponential of complex-number. The complex exponential routines
that have D-floating complex and G-floating complex input values write the
complex-exponent into this argument. For MTH$CDEXP, complex-exponent
argument specifies a D-floating complex number. For MTH$CGEXP,
complex-exponent specifies a G-floating complex number.

complex-number
VMS usage: complex_number
type: O_floating complex, G_floating complex
access: read only
mechanism: by reference

Complex number whose complex exponential is to be returned. This complex
number has the form (r,i), where r is the real part and i is the imaginary
part. The complex-number argument is the address of this complex number.
For MTH$CDEXP, complex-number specifies a D-floating number. For
MTH$CGEXP, complex-number specifies a G-floating number.

The complex exponential is computed as follows:

complex - exponent= (EXP(r) * COS(i),EXP(r) * SIN(i))

MTH-33

MTH$CxEXP

CONDITION
VALUES
SIGNALED

EXAMPLE
C+

SS$_ROPRAND

MTH$_FLOOVEMA T

Reserved operand. The MTH$CxEXP routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in Math Library: the
absolute value of r is greater than about 88.029
for 0-floating values or greater than about 709 .089
for G-floating values.

C This FORTRAN example forms the complex exponential
C of a G-f loating complex number using MTH$CGEXP
C and the FORTRAN random number generator RAN.
c
C Declare Z and MTH$CGEXP as complex values.
C MTH$CGEXP will return the exponential value
C of Z: CALL MTH$CGEXP(Z_NEW,Z)
c-

C+

COMPLEX*16 Z,Z_NEW
COMPLEX*16 MTH$GCMPLX
REAL*8 R,I
INTEGER M
M = 1234567

C Generate a random complex number with the FORTRAN
C- generic CMPLX.
c-

C+

R = RAN(M)
I = RAN(M)
Z = MTH$GCMPLX(R,I)
TYPE *· ' The complex number z is' ,z
TYPE *· ' '

C Compute the complex exponential value of Z.
c-

CALL MTH$CGEXP(Z_NEW,Z)
TYPE*· 'The complex exponential value of' ,z,' is',Z_NEW
END

This FORTRAN example demonstrates how to access MTH$CGEXP as a
procedure call. Because G-floating numbers are used, this program must be
compiled using the command "FORTRAN/G filename".

MTH-34

Notice the high precision of the output generated:

The complex number z is (0.853540718555450,0.204340159893036)
The complex exponential value of (0.853540718555450,0.204340159893036) is

(2.29909677719458,0.476447678044977)

MTH$CxEXP

MTH-35

MTH$CLOG

MTH$CLOG

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUE
SIGNALED

MTH-36

Complex Natural Logarithm
(F-floating Value)

The Complex Natural Logarithm (F-floating Value) routine returns the
complex natural logarithm of a complex number as an F-floating value.

MTH$CLOG complex-number

VMS usage: complex_number
type: F _floating complex
access: write only
mechanism: by value

The complex natural logarithm of a complex number. MTH$CLOG returns
an F-floating complex number.

complex-number
VMS usage: complex_number
type: F _floating complex
access: read only
mechanism: by reference

Complex number whose complex natural logarithm is to be returned. This
complex number has the form (r,i}, where r is the real part and i is the
imaginary part. The complex-number argument is the address of this
complex number. For MTH$CLOG, complex-number specifies an F-floating
number.

The complex natural logarithm is computed as follows:

CLOG(x) = (LOG(CABS(x)), ATAN2(i, r))

The routine descriptions for the D- and G-floating point versions of this
routine are listed alphabetically under MTH$CxLOG.

SS$_ROPRAND Reserved operand. The MTH$CLOG routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

EXAMPLE

MTH$CLOG

Examples of using MTH$CLOG from VAX MACRO (using both the CALLS
and the CALLG instructions) appear in the introductory section of this
manual.

MTH-37

MTH$CxLOG

MTH$CxLOG Complex Natural Logarithm

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

MTH-38

The Complex Natural Logarithm routine returns the complex natural
logarithm of a complex number.

MTH$CDLOG
MTH$CGLOG

complex-natural-log , complex-number
complex-natural-log ,complex-number

Each of the above formats accepts as input one of the floating-point complex
types.

None.

complex-natural-log
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference

Natural logarithm of the complex number specified by complex-number.
The complex natural logarithm routines that have D-floating complex
and G-floating complex input values write the address of the complex
natural logarithm into complex-natural-log. For MTH$CDLOG, the
complex-natural-log argument specifies a D-floating complex number.
For MTH$CGLOG, the complex-natural-log argument specifies a G-floating
complex number.

complex-number
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference

Complex number whose complex natural logarithm is to be returned. This
complex number has the form (r,i), where r is the real part and i is the
imaginary part. The complex-number argument is the address of this
complex number. For MTH$CDLOG, complex-number specifies a D-floating
number. For MTH$CGLOG, complex-number specifies a G-floating number.

The complex natural logarithm is computed as follows:

CLOG(x) = (LOG(CABS(x)), ATAN2(i, r))

MTH$CxLOG

CONDITION
VALUE
SIGNALED

SS$_ROPRAND Reserved operand. The MTH$CxLOG routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

EXAMPLE

C+
C This FORTRAN example forms the complex logarithm
C of a D-f loating complex number by using MTH$CDLOG
C and the FORTRAN random number generator RAN.
c
C Declare Z and MTH$CDLOG as complex values. Then MTH$CDLOG
c will return the logarithm of Z: CALL MTH$CDLOG(Z_NEW,Z).
c
C Declare Z,Z_LOG, and MTH$DCMPLX as complex values,
C and R and I as real values. MTH$DCMPLX takes two real
C arguments and returns one complex number.
c
C Given a complex number Z, MTH$CDLOG(Z) returns the
C complex natural logarithm of Z.
c-

C+

COMPLEX*16 Z,Z_NEW,MTH$DCMPLX
REAL*8 R,I
R = 3.1425637846746565
I = 7.43678469887
Z = MTH$DCMPLX(R,I)

C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
c-

TYPE*· ' The complex number z is' ,z
TYPE *,
CALL MTH$CDLOG(Z_NEW,Z)
TYPE*,' The complex logarithm of',z,' is' ,Z_NEW
END

This FORTRAN example program uses MTH$CDLOG by calling it as a
procedure. The output generated by this program is as follows:

The complex number z is (3.142563784674657,7.436784698870000)
The complex logarithm of (3.142563784674657,7.436784698870000) is

(2.088587642177504,1.170985519274141)

MTH-39

MTH$CMPLX

MTH$CMPLX Complex Number Made from
F-floating-Point

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

MTH-40

The Complex Number Made from F-floating-Point routine returns a
complex number from two floating-point input values.

MTH$CMPLX real-part ,imaginary-part

VMS usage: complex_number
type: F _floating complex
access: write only
mechanism: by value

A complex number. MTH$CMPLX returns an F-floating complex number.

real-part
VMS usage: floating_point
type: f _floating
access: read only
mechanism: by reference

Real part of a complex number. The real-part argument is the address
of a floating-point number that contains this real part, r, of (r,i). For
MTH$CMPLX, real-part specifies an F-floating number.

imaginary-part
VMS usage: floating_point
type: f _floating
access: read only
mechanism: by reference

Imaginary part of a complex number. The imag-parg argument is the address
of a floating-point number that contains this imaginary part, i, of (r,i). For
MTH$CMPLX, imaginary-part specifies an F-floating number.

The MTH$CMPLX routines return a complex number from two F-floating
input values. The routine descriptions for the D- and G-floating point
versions of this routine are listed alphabetically under MTH$xCMPLX.

MTH$CMPUC

CONDITION
VALUE
SIGNALED

SS$_ROPRAND Reserved operand. The MTH$CMPLX routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

EXAMPLE

C+
C This FORTRAN example forms two F-f loating
C point complex numbers using MTH$CMPLX
C and the FORTRAN random number generator RAN.
c
C Declare Z and MTH$CMPLX as complex values, and R
C and I as real values. MTH$CMPLX takes two real
C F-floating point values and returns one COMPLEX*8 number.
c
C Note, since CMPLX is a generic name in FORTRAN, it would be
C sufficient to use CMPLX.
C CMPLX must be declare to be of type COMPLEX*8.
c
C Z = CMPLX(R,I)
c-

C+

COMPLEX Z,MTH$CMPLX,CMPLX
REAL*4 R,I
INTEGER M
M = 1234567
R = RAN(M)
I = RAN(M)
Z = MTH$CMPLX(R,I)

C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
c-

TYPE *· ' The two input values are:' ,R,I
TYPE*· ' The complex number z is' ,z
z = CMPLX(RAN(M),RAN(M))
TYPE *·
TYPE*· 'Using the FORTRAN generic CMPLX with random Rand I:'
TYPE*· 'The complex number z is',z
END

This FORTRAN example program demonstrates the use of MTH$CMPLX.
The output generated by this program is as follows:

The two input values are: 0.8535407 0.2043402
The complex number z is (0.8535407,0.2043402)
Using the FORTRAN generic CMPLX with random Rand I:
The complex number z is (0.5722565,0.1857677)

MTH-41

MTH$xCMPUC

MTH$xCMPLX Complex Number Made from D­
or G-floating-Point

FORMAT

RETURNS

ARGUMENTS

MTH-42

The Complex Number Made from D- or G-floating-Point routine returns a
complex number from two D- or G-floating input values.

MTH$DCMPLX
MTH$GCMPLX

complx ,real-part ,imaginary-part
complx ,real-part ,imaginary-part

Each of the above formats accepts as input one of floating-point complex
types.

None.

com pix
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference

The floating-point complex value of a complex number. The complex
exponential functions that have D-floating complex and G-floating complex
input values write the address of this floating-point complex value into
complx. For MTH$DCMPLX, complx specifies a D-floating complex number.
For MTH$GCMPLX, complx specifies a G-floating complex number. For
MTH$CMPLX, complx is not used.

real-part
VMS usage: floating_point
type: D_floating, G_floating
access: read only
mechanism: by reference

Real part of a complex number. The real-part argument is the address
of a floating-point number that contains this real part, r, of (r,i).
For MTH$DCMPLX, real-part specifies a D-floating number. For
MTH$GCMPLX, real-part specifies a G-floating number.

imaginary-part
VMS usage: floating_point
type: D_floating, G_floating
access: read only
mechanism: by reference

Imaginary part of a complex number. The imag-parg argument is the
address of a floating-point number that contains this imaginary part, i, of
(r,i). For MTH$DCMPLX, imaginary-part specifies a D-floating number. For
MTH$GCMPLX, imaginary-part specifies a G-floating number.

CONDITION
VALUE
SIGNALED

EXAMPLE

C+

SS$_ROPRAND

C This FORTRAN example forms two D-f loating
C point complex numbers using MTH$CMPLX
C and the FORTRAN random number generator RAN.
c

MTH$xCMPLX

Reserved operand. The MTH$xCMPLX routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

C Declare Z and MTH$DCMPLX as complex values, and R
C and I as real values. MTH$DCMPLX takes two real
C D-f loating point values and returns one
C COMPLEX*16 number.
c
c-

C+

COMPLEX*16 Z
REAL*8 R,I
INTEGER M
M = 1234567
R = RAN(M)
I = RAN(M)
CALL MTH$DCMPLX(Z,R,I)

C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
c-

TYPE*• 'The two input values are:' ,R,I
TYPE *· ' The complex number z is' ,Z
END

This FORTRAN example demonstrates how to make a procedure call
to MTH$DCMPLX. Notice the difference in the precision of the output
generated.

The two input values are: 0.8535407185554504 0.2043401598930359
The complex number z is (0.8535407185554504,0.2043401598930359)

MTH-43

MTH$CONJG

MTH$CONJG Conjugate of a Complex Number
(F-floating Value)

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUE
SIGNALED

MTH-44

The Conjugate of a Complex Number (F-floating Value) routine returns the
complex conjugate (r,-i) of a complex number (r,i) as an F-floating value.

MTH$CONJG complex-number

VMS usage: complex_number
type: f _floating complex
access: write only
mechanism: by value

Complex conjugate of a complex number. MTH$CONJG returns an F-floating
complex number.

complex-number
VMS usage: complex_number
type: F _floating complex
access: read only
mechanism: by reference

A complex number (r,i), where r and i are floating-point numbers. The
complex-number argument is the address of this floating-point complex
number. For MTH$CONJG, complex-number specifies an F-floating number.

The MTH$CONJG routine return the complex conjugate (r,-i) of a complex
number (r,i) as an F-floating value. The routine descriptions for the D­
and G-floating point versions of this routine are listed alphabetically under
MTH$xCONJG.

SS$_ROPRAND Reserved operand. The MTH$CONJG routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH$xCONJG

MTH$xCONJG Conjugate of a Complex Number

FORMAT

RETURNS

ARGUMENTS

CONDITION
VALUE
SIGNALED

The Conjugate of a Complex Number routine returns the complex
conjugate (r,-i) of a complex number (r,i).

MTH$DCONJG
MTH$GCONJG

complex-conjugate ,complex-number
complex-conjugate ,complex-number

Each of the above formats accepts as input one of the floating-point complex
types.

None.

comp/ex-conjugate
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference

The complex conjugate (r,-i) of the complex number specified by complex­
number. MTH$DCONJG and MTH$GCONJG write the address of this
complex conjugate into complex-conjugate. For MTH$DCONJG, the
complex-conjugate argument specifies the address of a D-floating complex
number. For MTH$GCONJG, the complex-conjugate argument specifies the
address of a G-floating complex number.

complex-number
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference

A complex number (r,i), where r and i are floating-point numbers. The
complex-number argument is the address of this floating-point complex
number. For MTH$DCONJG, complex-number specifies a D-floating
number. For MTH$GCONJG, complex-number specifies a G-floating
number.

SS$_ROPRAND Reserved operand. The MTH$xCONJG routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH-45

MTH$xCONJG

EXAMPLE

C+
C This FORTRAN example forms the complex conjugate
C of a G-f loating complex number using MTH$GCONJG
C and the FORTRAN random number generator RAN.
c
C Declare Z, Z_NEW, and MTH$GCONJG as a complex values.
C MTH$GCONJG will return the complex conjugate
C value of Z: Z_NEW = MTH$GCONJG(Z).
c-

C+

COMPLEX*16 Z,Z_NEW,MTH$GCONJG
COMPLEX*16 MTH$GCMPLX
REAL*8 R,I,MTH$GREAL,MTH$GIMAG
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic CMPLX.
c-

C+

R = RAN(M)
I = RAN(M)
Z = MTH$GCMPLX(R,I)
TYPE*· 'The complex number z is',z
TYPE 1,MTH$GREAL(Z) ,MTH$GIMAG(Z)

1 FORMAT(' with real part ',F20.16,' and imaginary part',F20.16)
TYPE *, ' '

C Compute the complex absolute value of Z.
c-

Z_NEW = MTH$GCONJG(Z)
TYPE*· 'The complex conjugate value of' ,z,' is',Z_NEW
TYPE 1,MTH$GREAL(Z_NEW),MTH$GIMAG(Z_NEW)
END

This FORTRAN example demonstrates how to make a function call to
MTH$GCONJG. Because G-floating numbers are used, the examples must be
compiled with the statement "FORTRAN/G filename".

The output generated by this program is as follows:

The complex number z is (0.853540718555450,0.204340159893036)
with real part 0.8535407185554504
and imaginary part 0.2043401598930359

The complex conjugate value of
(0.853540718555450,0.204340159893036) is
(0.853540718555450,-0.204340159893036)
with real part 0.8535407185554504
and imaginary part -0.2043401598930359

MTH-46

MTH$xCOS

MTH$xCOS Cosine of Angle Expressed in
Radians

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

The Cosine of Angle Expressed in Radians routine returns the cosine of a
given angle (in radians).

MTH$COS angle-in-radians
MTH$DCOS angle-in-radians
MTH$GCOS angle-in-radians
Each of the above formats accepts as input one of the floating-point types.

MTH$COS_R4
MTH$DCOS_R7
MTH$GCOS_R7
Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: write only
mechanism: by value

Cosine of the angle. MTH$COS returns an F-floating number. MTH$DCOS
returns a D-floating number. MTH$GCOS returns a G-floating number.

angle-in-radians
VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: read only
mechanism: by reference

The angle in radians. The angle-in-radians argument is the address of a
floating-point number. For MTH$COS, angle-in-radians is an F-floating
number. For MTH$DCOS, angle-in-radians specifies a D-floating number.
For MTH$GCOS, angle-in-radians specifies a G-floating number.

See the MTH$xSINCOS routine for the algorithm used to compute the cosine.

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HCOS.

MTH-47

MTH$xCOS

CONDITION
VALUE
SIGNALED

MTH-48

SS$_ROPRAND Reserved operand. The MTH$xCOS procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH$xCOSD

MTH$xCOSD Cosine of Angle Expressed in
Degrees

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

The Cosine of Angle Expressed in Degrees routine returns the cosine of a
given angle (in degrees).

MTH$COSD angle-in-degrees
MTH$DCOSD angle-in-degrees
MTH$GCOSD angle-in-degrees
Each of the above formats accepts as input one of the floating-point types.

MTH$COSD_R4
MTH$DCOSD_R7
MTH$GCOSD_R7
Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: write only
mechanism: by value

Cosine of the angle. MTH$COSD returns an F-floating number.
MTH$DCOSD returns a D-floating number. MTH$GCOSD returns a G­
floating number.

angle-in-degrees
VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: read only
mechanism: by reference

Angle (in degrees). The angle-in-degrees argument is the address of a
floating-point number. For MTH$COSD, angle-in-degrees specifies an F­
floating number. For MTH$DCOSD, angle-in-degrees specifies a D-floating
number. For MTH$GCOSD, angle-in-degrees specifies a G-floating number.

See the MTH$SINCOSD routine for the algorithm used to compute the
cosine.

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HCOSD.

MTH-49

MTH$xCOSD

CONDITION
VALUE
SIGNALED

MTH-50

SS$_ROPRAND Reserved operand. The MTH$xCOSD procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH$xCOSH

MTH$xCOSH Hyperbolic Cosine

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Hyperbolic Cosine routine returns the hyperbolic cosine of the input
value.

MTH$COSH floating-point-input-value
MTH$DCOSH floating-point-input-value
MTH$GCOSH floating-point-input-value
Each of the above formats accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: write only
mechanism: by value

The hyperbolic cosine of the input value floating-point-input-value.
MTH$COSH returns an F-floating number. MTH$DCOSH returns a D­
floating number. MTH$GCOSH returns a G-floating number.

floating-point-input-value
VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of
this input value. For MTH$COSH, floating-point-input-value specifies an
F-floating number. For MTH$DCOSH, floating-point-input-value specifies a
D-floating number. For MTH$GCOSH, floating-point-input-value specifies
a G-floating number.

Computation of the hyperbolic cosine depends on the magnitude of the
input argument. The range of the function is partitioned using four data­
type-dependent constants: a(z), b(z), and c(z). The subscript z indicates the
data type. The constants depend on the number of exponent bits (e) and the
number of fraction bits (f) associated with the data type (z).

The values of e and f are:

z

F

D

G

e

8

8

11

f

24

56

53

MTH-51

MTH$xCOSH

CONDITION
VALUES
SIGNALED

MTH-52

The values of the constants in terms of e and f are:

Variable Value

2(-J/2) a(z)

b(z)

c(z)

CEILING[(! + 1)/2 * ln(2)]

(2e- 1
) * ln(2)

Based on the above definitions, zCOSH(X) is computed as follows:

Value of X

IXI < a(z)

a(z) s; IXI < .25

.25 s; IXI < b(z)

b(z) s; IXI < c(z)

c(z) s; lxl

Value Returned

Computed using a power series expansion in IXl2

(zEXP(IXI) + l/zEXP(IXl))/2

zEXP(IXl)/2

Overflow occurs

This routine description for the H-floating point value is listed alphabetically
under MTH$HCOSH.

SS$_ROPRAND

MTH$_FLOOVEMA T

Reserved operand. The MTH$xCOSH procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in Math Library: the
absolute value of floating-point-input-value is
greater than about yyy; LIB$SIGNAL copies the
reserved operand to the signal mechanism vector.
The result is the reserved operand -0.0 unless a
condition handler changes the signal mechanism
vector.

The values of yyy are:

MTH$COSH-88. 722
MTH$DCOSH-88. 722
MTH$GCOSH-709. 782

MTH$CSIN

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH$CSIN

Sine of a Complex Number
(F-floating Value)

The Sine of a Complex Number (F-floating Value) routine returns the sine
of a complex number (r,i) as an F-floating value.

MTH$CSIN complex-number

VMS usage: complex_number
type: f _floating complex
access: write only
mechanism: by value

Complex sine of the complex number. MTH$CSIN returns an F-floating
complex number.

complex-number
VMS usage: complex_number
type: F _floating complex
access: read only
mechanism: by reference

A complex number (r,i), where r and i are floating-point numbers. The
complex-number argument is the address of this complex number. For
MTH$CSIN, complex-number specifies an F-floating complex number.

The complex sine is computed as follows:

complex- sine= (SIN(r) * COSH(i),COS(r) * SINH(i))

The routine descriptions for the D- and G-floating point versions of this
routine are listed alphabetically under MTH$CxSIN.

SS$_ROPRAND

MTH$_FLOOVEMA T

Reserved operand. The MTH$CSIN procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Fioating-point overflow in Math Library: the
absolute value of i is greater than about 88.029
for F-floating values.

MTH-53

MTH$CxSIN

MTH$CxSIN

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

MTH-54

Sine of a Complex Number

The Sine of a Complex Number routine returns the sine of a complex
number (r,i).

MTH$CDSIN
MTH$CGSIN

complex-sine ,complex-number
complex-sine , complex-number

Each of the above formats accepts as input one of the floating-point complex
types.

None.

complex-sine
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference

Complex sine of the complex number. The complex sine routines with D­
floating complex and G-floating complex input values write the complex sine
into this complex-sine argument. For MTH$CDSIN, complex-sine specifies
a D-floating complex number. For MTH$CGSIN, complex-sine specifies a
G-floating complex number.

complex-number
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference

A complex number (r,i), where r and i are floating-point numbers. The
complex-number argument is the address of this complex number. For
MTH$CDSIN, complex-number specifies a D-floating complex number. For
MTH$CGSIN, complex-number specifies a G-floating complex number.

The complex sine is computed as follows:

complex - sine= (SIN(r) * COSH(i), COS(r) * SINH(i))

CONDITION
VALUES
SIGNALED

EXAMPLE

C+

SS$_ROPRAND

MTH$_FLOOVEMA T

C This FORTRAN example forms the complex
C sine of a G-f loating complex number using
C MTH$CGSIN and the FORTRAN random number
C generator RAN.
c
C Declare Z and MTH$CGSIN as complex values.
C MTH$CGSIN will return the sine value
C of Z: CALL MTH$CGSIN(Z_NEW,Z)
c-

C+

COMPLEX*16 Z,Z_NEW
COMPLEX*16 DCMPLX
REAL*8 R,I
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic DCMPLX.
c-

C+

R = RAN(M)
I = RAN(M)
Z = DCMPLX(R,I)

MTH$CxSIN

Reserved operand. The MTH$CxSIN procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in Math Library: the
absolute value of i is greater than about 88.029
for D-floating values or greater than about 709.089
for G-floating values.

C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
c-

C+

TYPE *· ' The complex number z is' ,z
TYPE *·

C Compute the complex sine value of Z.
c-

CALL MTH$CGSIN(Z_NEW,Z)
TYPE *· ' The complex sine value of' ,z,' is' ,Z_NEW
END

MTH-55

MTH$CxSIN

MTH-56

This FORTRAN example demonstrates a procedure call to MTH$CGSIN.
Because this program uses G-floating numbers, it must be compiled with the
statement "FORTRAN/G filename".

The output generated by this program is as follows:

The complex number z is (0.853540718555450,0.204340159893036)
The complex sine value of (0.853540718555450,0.204340159893036) is

(0.769400835484975,0.135253340912255)

MTH$CSQRT

MTH$CSQRT Complex Square Root (F-floating
Value)

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Complex Square Root (F-floating Value) routine returns the complex
square root of a complex number (r,i).

MTH$CSQRT complex-number

VMS usage: complex_number
type: f _floating complex
access: write only
mechanism: by value

The complex square root of complex-number. MTH$CSQRT returns an
F-floating number.

complex-number
VMS usage: complex_number
type: F _floating complex
access: read only
mechanism: by reference

Complex number (r,i). The complex-number argument contains the address
of this complex number. For MTH$CSQRT, complex-number specifies an
F-floating number.

The complex square root is computed as follows.

First, calculate ROOT and Q using the following equations:

ROOT= SQRT((ABS(r) + (CABS(r, i))/2)

Q = i/(2 *ROOT)

Then, the complex result is given as follows:

CSQRT((r,i))

20 Any (ROOT,Q)

<O 20 (Q,ROOT)

<O <O (-Q,-ROOT)

The routine descriptions for the D- and G-floating point versions of this
routine are listed alphabetically under MTH$CxSQRT.

MTH-57

MTH$CSQRT

CONDITION
VALUE
SIGNALED

MTH-58

SS$_RQPRAND Reserved operand. The MTH$CSQRT procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH$CxSQRT

MTH$CxSQRT Complex Square Root

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Complex Square Root routine returns the complex square root of a
complex number (r ,i).

MTH$CDSQRT
MTH$CGSQRT

complex-square-root ,complex-number
complex-square-root ,complex-number

Each of the above formats accepts as input one of the floating-point complex
types.

None.

complex-square-root
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference

Complex square root of the complex number specified by complex-number.
The complex square root routines that have D-floating complex and G­
floating complex input values write the complex square root into complex­
square-root. For MTH$CDSQRT, complex-square-root specifies a D-floating
complex number. For MTH$CGSQRT, complex-square-root specifies a
G-floating complex number.

complex-number
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference

Complex number (r,i). The complex-number argument contains the address
of this complex number. For MTH$CDSQRT, complex-number specifies a D­
floating number. For MTH$CGSQRT, complex-number specifies a G-floating
number.

The complex square root is computed as follows.

First, calculate ROOT and Q using the following equations:

ROOT= SQRT((ABS(r) + (CABS(r,i))/2)

Q = i/(2 *ROOT)

MTH-59

MTH$CxSQRT

Then, the complex result is given as follows:

CONDITION
VALUE
SIGNALED

EXAMPLE
C+

r

2::0
<O
<O

SS$_ROPRAND

any

2::0
<O

C This FORTRAN example forms the complex square
C root of a D-f loating complex number using
C MTH$CDSQRT and the FORTRAN random number
C generator RAN.
c

CSQRT((r,i))

(ROOT,Q)

(Q,ROOT)

(-0,-ROOT)

Reserved operand. The MTH$CxSQRT procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

C Declare Z and Z_NEW as complex values. MTH$CDSQRT
C will return the complex square root of
C Z: CALL MTH$CDSQRT(Z_NEW,Z).
c-

C+

COMPLEX*16 Z,Z_NEW
COMPLEX*16 DCMPLX
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic CMPLX.
c-

Z = DCMPLX(RAN(M),RAN(M))

C+
C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
c-

C+

TYPE *· ' The complex number z is' ,z
TYPE*·

C Compute the complex complex square root of Z.
c-

CALL MTH$CDSQRT(Z_NEW,Z)
TYPE*· 'The complex square root of',z,' is' ,Z_NEW
END

MTH-60

MTH$CxSQRT

This FORTRAN example program demonstrates a procedure call to
MTH$CDSQRT. The output generated by this program is as follows:

The complex number z is (0.8535407185554504,0.2043401598930359)
The complex square root of (0.8535407185554504,0.2043401598930359) is

(0.9303763973040062,0.1098158554350485)

MTH-61

MTH$CVT _x_x

MTH$CVT_x_x Convert One Double-Precision
Value

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

MTH-62

The Convert One Double-Precision Value routines convert one double­
precision value to the destination data type and return the result as a
function value. MTH$CVT_D_G converts a D-floating value to G-floating
and MTH$CVT_G_D converts a G-floating value to a D-floating value.

MTH$CVT_D_G
MTH$CVT_G_D

floating-point-input-val
floating-point-input-val

VMS usage: floating_point
type: G_floating, D_floating
access: write only
mechanism: by value

The converted value. MTH$CVT_D_G returns a G-floating value.
MTH$CVT_G_D returns a D-floating value.

floating-point-input-val
VMS usage: floating_point
type: D_floating, G_floating
access: read only
mechanism: by reference

The input value to be converted. The floating-point-input-val argument is
the address of this input value. For MTH$CVT_D_G, the floating-point­
input-val argument specifies a D-floating number. For MTH$CVT_G_D, the
floating-point-input-val argument specifies a G-floating number.

These procedures are designed to function as hardware conversion
instructions. They fault on reserved operands. If floating-point overflow
is detected, an error is signaled. If floating-point underflow is detected and
floating-point underflow is enabled, an error is signaled.

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_FLOOVEMA T

MTH$_FLOUNDMA T

MTH$CVT_x_x

Reserved operand. The MTH$CVT_x_x procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in Math Library.

Floating-point underflow in Math Library.

MTH-63

MTH$CVT_xA_xA

MTH$CVT_xA_xA
Convert an Array of Double-Precision Values

FORMAT

RETURNS

ARGUMENTS

MTH-64

The Convert an Array of Double-Precision Values routines convert a
contiguous array of double-precision values to the destination data type
and return the results as an array. MTH$CVT _OA_GA converts D-floating
values to G-floating and MTH$CVT_GA_DA converts G-floating values to
D-floating.

MTH$CVT_DA_GA floating-point-input-array
, floating-point-dest-array
{,array-size]

MTH$CVT_GA_DA floating-point-input-array
, floating-point-dest-array
{,array-size]

MTH$CVT_DA_GA and MTH$CVT_GA_DA return the address of the
output array to the floating-point-dest-array argument.

floating-point-input-array
VMS usage: floating_point
type: D_floating, G_floating
access: read only
mechanism: by reference, array reference

Input array of values to be converted. The floating-point-input-array
argument is the address of an array of floating-point numbers. For
MTH$CVT_DA_GA, floating-point-input-array specifies an array of D­
floating numbers. For MTH$CVT_GA_DA, floating-point-input-array
specifies an array of a G-floating numbers.

floating-point-dest-array
VMS usage: floating_point
type: G_floating, D_floating
access: write only
mechanism: by reference, array reference

Output array of converted values. The floating-point-dest-array argument
is the address of an array of floating-point numbers. For MTH$CVT_DA_
GA, floating-point-dest-array specifies an array of G-floating numbers.
For MTH$CVT_GA_DA, floating-point-dest-array specifies an array of
D-floating numbers.

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH$CVT_xA_xA

array-size
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Number of array elements to be converted. The default value is 1. The
array-size argument is the address of a longword containing this number of
elements.

These procedures are designed to function as hardware conversion
instructions. They fault on reserved operands. If floating-point overflow
is detected, an error is signaled. If floating-point underflow is detected and
floating-point underflow is enabled, an error is signaled.

SS$_ROPRAND

MTH$_FLOOVEMA T

MTH$_FLOUNDMA T

Reserved operand. The MTH$CVT _xA _xA
procedure encountered a floating-point reserved
operand due to incorrect user input. A floating­
point reserved operand is a floating-point datum
with a sign bit of 1 and a biased exponent of zero.
Floating-point reserved operands are reserved for
future use by DIGIT AL.

Floating-point overflow in Math Library.

Floating-point underflow in Math Library.

MTH-65

MTH$xEXP

MTH$xEXP Exponential

FORMAT

jsb entries

RETURNS

ARGUMENTS

MTH-66

The Exponential routine returns the exponential of the input value.

MTH$EXP floating-point-input-value
MTH$DEXP floating-point-input-value
MTH$GEXP floating-point-input-value
Each of the above formats accepts as input one of the floating-point types.

MTH$EXP_R4
MTH$DEXP _R6
MTH$GEXP_R6
Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: write only
mechanism: by value

The exponential of floating-point-input-value. MTH$EXP returns an F­
floating number. MTH$DEXP returns a D-floating number. MTH$GEXP
returns a G-floating number.

floating-point-input-value
VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of
a floating-point number. For MTH$EXP, floating-point-input-value specifies
an F-floating number. For MTH$DEXP, floating-point-input-value specifies
a D-floating number. For MTH$GEXP, floating-point-input-value specifies a
G-floating number.

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH$xEXP

The exponential of xis computed as:

Value of x

X > c(z)

x:::; - c(z)

IXI < ru+1)

Otherwise

where:

Y = INTEGER(x * ln2(E))

V = FRAC(x * ln2(E)) * 16

U = INTEGER(V)/16

W = FRAC(V)/16

Value Returned

Overflow occurs

2W =polynomial approximation of degree 4,8, or 8 for z = F, D, or G.

See also the section on the hyperbolic cosine for definitions off and c(z).

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HEXP.

SS$_ROPRAND

MTH$_FLOOVEMA T

Reserved operand. The MTH$xEXP routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in Math Library: floating­
point-input-value is greater than yyy; LIB$SIGNAL
copies the reserved operand to the signal
mechanism vector. The result is the reserved
operand -0.0 unless a condition handler changes
the signal mechanism vector.

The values of yyy are approximately:

MTH$EXP-88.029
MTH$DEXP-88.029
MTH$GEXP-709.089

MTH-67

MTH$xEXP

MTH$_FLOUNDMA T

EXAMPLE

IDENTIFICATION DIVISION.

Floating-point underflow in Math Library: floating­
point-input-value is less than or equal to yyy
and the caller (CALL or JSB) has set hardware
floating-point underflow enable. The result is set
to 0.0. If the caller has not enabled floating-point
underflow (the default), a result of 0.0 is returned
but no error is signaled.

The values of yyy are approximately:

MTH$EXP- -88. 722
MTH$DEXP- -88. 722
MTH$GEXP- -709.774

PROGRAM-ID. FLOATING_POINT.

* * Calls MTH$EXP using a Floating Point data type.
* Calls MTH$DEXP using a Double Floating Point data type.

*
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FLOAT_PT COMP-1.
01 ANSWER_F COMP-1.
01 DOUBLE_PT COMP-2.
01 ANSWER_D COMP-2.
PROCEDURE DIVISION.
PO.

MOVE 12.34 TO FLOAT_PT.
MOVE 3.456 TO DOUBLE_PT.

CALL 11 MTH$EXP 11 USING BY REFERENCE FLOAT_PT GIVING ANSWER_F.
DISPLAY" MTH$EXP of 11 , FLOAT_PT CONVERSION, 11 is 11 ,

ANSWER_F CONVERSION.

CALL 11 MTH$DEXP 11 USING BY REFERENCE DOUBLE_PT GIVING ANSWER_D.
DISPLAY 11 MTH$DEXP of 11 , DOUBLE_PT CONVERSION, 11 is 11 ,

ANSWER_D CONVERSION .
STOP RUN.

MTH-68

This sample program demonstrates calls to MTH$EXP and MTH$DEXP from
COBOL.

The output generated by this program is as follows:

MTH$EXP of 1.234000E+01 is 2.286620E+05
MTH$DEXP of 3.456000000000000E+OO is
3.168996280537917E+01

MTH$HACOS

MTH$HACOS Arc Cosine of Angle Expressed in
Radians (H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the cosine of an angle, the Arc Cosine of Angle Expressed in
Radians (H-floating Value) routine returns that angle (in radians) in H­
floating-point precision.

MTH$HACOS h-radians ,cosine

MTH$HACOS_R8

None.

h-radians
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Angle (in radians) whose cosine is specified by cosine. The h-radians
argument is the address of an H-floating number that is this angle. ·
MTH$HACOS writes the address of the angle into h-radians.

cosine
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The cosine of the angle whose value (in radians) is to be returned. The cosine
argument is the address of a floating-point number that is this cosine. The
absolute value of cosine must be less than or equal to 1. For MTH$HACOS,
cosine specifies an H-floating number.

MTH-69

MTH$HACOS

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH-70

The angle in radians whose cosine is Xis computed as:

Value of
Cosine

0

1

-1

O<X< 1

-1<x<0

1 < IXI

SS$_ROPRAND

Value Returned

7r/2

0

7r

zAT AN(zSQRT(l - X 2
)/ X), where zAT AN and zSQRT are the

Math Library arc tangent and square root routines, respectively,
of the appropriate data type

zAT AN(zSQRT(l - X 2
)/ X) + 7r

The error MTH$_1NV ARGMA T is signaled

Reserved operand. The MTH$xACOS routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit of
one and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH$_1NV ARGMA T Invalid argument. The absolute value of cosine
is greater than 1. LIB$SIGNAL copies the
floating-point reserv~d operand to the mechanism
argument vector CHF$L_MCH_SAVRO/R1. The
result is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L _MCH_SAVRO/R 1.

MTH$HACOSD

MTH$HACOSD Arc Cosine of Angle Expressed in
Degrees {H-Floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the cosine of an angle, the Arc Cosine of Angle Expressed in
Degrees (H-Floating Value) routine returns that angle (in degrees) as an
H-floating value.

MTH$HACOSD h-degrees ,cosine

MTH$HACOSD_R8

None.

h-degrees
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Angle (in degrees) whose cosine is specified by cosine. The h-degrees
argument is the address of an H-floating number that is this angle.
MTH$HACOSD writes the address of the angle into h-degrees.

cosine
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Cosine of the angle whose value (in degrees) is to be returned. The cosine
argument is the address of a floating-point number that is this cosine. The
absolute value of cosine must be less than or equal to 1. For MTH$HACOSD,
cosine specifies an H-floating number.

MTH-71

MTH$HACOSD

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH-72

The angle in degrees whose cosine is Xis computed as:

Value of
Cosine

0

1

-1

0<X<1

-1<x<0

1 < IXI

SS$_ROPRAND

Angle Returned

90

0

180

zATAND(zSQRT(l - X 2)/X), where zATAND and zSORT
are the Math Library arc tangent and square root routines,
respectively, of the appropriate data type

zAT AN D(zSQRT(l - X 2
)/ X) + 180

The error MTH$_1NV ARGMA T is signaled

Reserved operand. The MTH$xACOSD routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit of
one and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH$_1NV ARGMA T Invalid argument. The absolute value of cosine
is greater than 1 . LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/R1. The
result is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/R1.

MTH$HASIN

MTH$HASIN Arc Sine in Radians (H-floating
Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the sine of an angle, the Arc Sine in Radians (H-floating Value)
routine returns that angle (in radians) as an H-floating value.

MTH$HASIN h-radians ,sine

MTH$HASIN_R8

None.

h-radians
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Angle (in radians) whose sine is specified by sine. The h-radians argument is
the address of an H-floating number that is this angle. MTH$HASIN writes
the address of the angle into h-radians.

sine
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The sine of the angle whose value (in radians) is to be returned. The sine
argument is the address of a floating-point number that is this sine. The
absolute value of sine must be less than or equal to 1. For MTH$HASIN,
sine specifies an H-floating number.

MTH-73

MTH$HASIN

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH-74

The angle in radians whose sine is X is computed as:

Value of
Sine

0

1

-1

0 < IXI < 1

1 < IXI

SS$_ROPRAND

Angle Returned

0

7r/2

-7r/2

zATAN(X/zSQRT(l - X 2
)), where zATAN and zSQRT are the

Math Library arc tangent and square root routines, respectively,
of the appropriate data type

The error MTH$_INV ARGMA T is signaled

Reserved operand. The MTH$xASIN routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH$_1NV ARGMA T Invalid argument. The absolute value of sine
is greater than 1 . LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/R1. The
result is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/R1.

MTH$HASIND

MTH$HASIND Arc Sine in Degrees (H-Floating
Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

Given the sine of an angle, the Arc Sine in Degrees (H-Floating Value)
routine returns that angle (in degrees) as an H-floating value.

MTH$HASIND h-degrees ,sine

MTH$HASIND_R8

None.

h-degrees
VMS usage: floating_point
type: H _floating
access: write only
mechanism: by reference

Angle (in degrees) whose sine is specified by sine. The h-degrees argument
is the address of an H-floating number that is this angle. MTH$HASIND
writes the address of the angle into h-degrees.

sine
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Sine of the angle whose value (in degrees) is to be returned. The sine
argument is the address of a floating-point number that is this sine. The
absolute value of sine must be less than or equal to 1. For MTH$HASIND,
sine specifies an H-floating number.

MTH-75

MTH$HASIND

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH-76

The angle in degrees whose sine is Xis computed as:

Value of
Sine

0

1

-1

0 < IXI < 1

1 < IXI

SS$_ROPRAND

Value Returned

0

90

-90

zATAND(X/zSQRT(l - X 2
)), where zATAND and zSQRT

are the Math Library arc tangent and square root routines,
respectively, of the appropriate data type

The error MTH$_1NV ARGMA T is signaled

Reserved operand. The MTH$xASIND routine
encountered a floating point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit of
one and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH$_1NV ARGMA T Invalid argument. The absolute value of sine
is greater than 1 . LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/R 1. The
result is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/R1.

MTH$HATAN

MTH$HAT AN Arc Tangent in Radians (H-floating
Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

Given the tangent of an angle, the Arc Tangent in Radians (H-floating
Value) routine returns that angle (in radians) as an H-floating value.

MTH$HATAN h-radians ,tangent

MTH$HATAN_R8

None.

h-radians
VMS usage:· floating_point
type: H_floating
access: write only
mechanism: by reference

Angle (in radians) whose tangent is specified by tangent. The h-radians
argument is the address of an H-floating number that is this angle.
MTH$HATAN writes the address of the angle into h-radians.

tangent
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The tangent of the angle whose value (in radians) is to be returned. The
tangent argument is the address of a floating-point number that is this
tangent. For MTH$HATAN, tangent specifies an H-floating number.

In radians, the computation of the arc tangent function is based on the
following identities:

arctan(X) = X - X 3 /3 + X 5 /5 - X 7 /7 + ...
arctan(X) = X + X * Q(X2

),

where Q(Y) = -Y/3 + Y 2 /5 - Y 3 /7 + ...
arctan(X) = X * P(X2

),

where P(Y) = 1 - Y /3 + Y 2 /5 - Y 3 /7 + ...
arctan(X) = 7r/2 - arctan(l/X)

arctan(X) = arctan(A) + arctan((X - A)/(1 +A* X))
for any real A

MTH-77

MTH$HATAN

CONDITION
VALUE
SIGNALED

MTH-78

The angle in radians whose tangent is X is computed as:

Value of X

o::;X::;3/32

3/32 < X::;ll

ll<X

X<O

SS$_ROPRAND

Angle Returned

X+X*Q(X2
)

ATAN(A) + V * (P(V 2
)), where A and ATAN(A) are

chosen by table lookup and V = (X - A)/(1 +A* X)

7r/2 - W * (P(W2
)) where W = 1/X

-zAT AN(IXI)

Reserved operand. The MTH$xAT AN routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH$HATAND

MTH$HATAND Arc Tangent in Degrees
(H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

Given the tangent of an angle, the Arc Tangent in Degrees (H-floating
Value) routine returns that angle (in degrees) as an H-floating point value.

MTH$HATAND h-degrees ,tangent

MTH$HATAND_R8

None.

h-degrees
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Angle (in degrees) whose tangent is specified by tangent. The h-degrees
argument is the address of an H-floating number that is this angle.
MTH$HATAND writes the address of the angle into h-degrees.

tangent
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The tangent of the angle whose value (in degrees) is to be returned. The
tangent argument is the address of a floating-point number that is this
tangent. For MTH$HATAND, tangent specifies an H-floating number.

The computation of the arc tangent function is based on the following
identities:

arctan(X) = 180/11" * (X - X3 /3 + X5 /5 - X 7 /7 + ...)
arctan(X) = 64 * X + X * Q(X2

),

where Q(Y) = 180/rr * [(1-64 * 7r/180) - Y/3+
y2 /5- y3 /7 + y4 /9 ...]

arctan(X) = X * P(X2
),

where P(Y) = 180/rr * [1 - Y /3 + Y 2 /5 - y 3 /7+
y4/9 ...]

arctan(X) = 90 - arctan(l/ X)

arctan(X) = arctan(A) + arctan{{X - A)/{1 +A* X))

MTH-79

MTH$HATAND

The angle in degrees whose tangent is X is computed as:

CONDITION
VALUE
SIGNALED

MTH-80

Tangent

X9/32

3/32 < X::;ll

ll<X

X<O

SS$_ROPRAND

Angle Returned

64 * X + X * Q(X2
)

ATAND(A) + V * P(V2
), where A and ATAND(A) are

chosen by table lookup and V = (X - A)/(l +A* X)

90- W * (P(W2
)), where W = 1/X

-zAT AN D(IXI)

Reserved operand. The MTH$xAT AND routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH$HATAN2

MTH$HAT AN2 Arc Tangent in Radians
(H-floating Value) with Two
Arguments

FORMAT

RETURNS

ARGUMENTS

Given sine and cosine, the Arc Tangent in Radians (H-floating Value) with
Two Arguments routine returns the angle (in radians) as an H-floating value
whose tangent is given by the quotient of sine and cosine, (sine/cosine).

MTH$HATAN2 h-radians ,sine ,cosine

None.

h-radians
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Angle (in radians) whose tangent is specified by (sine/cosine). The h­
radians argument is the address of an H-floating number that is this angle.
MTH$HATAN2 writes the address of the angle into h-radians.

sine
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Dividend. The sine argument is the address of a floating-point number that
is this dividend. For MTH$HATAN2, sine specifies an H-floating number.

cosine
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Divisor. The cosine argument is the address of a floating-point number that
is this divisor. For MTH$HATAN2, cosine specifies an H-floating number.

MTH-81

MTH$HATAN2

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH-82

The angle in radians whose tangent is Y /X is computed as follows, where f is
defined in the description of MTH$zCOSH.

Value of Input Arguments

X = 0 or Y/X > 2U+1I

X > 0 and Y/X~ 2U+11

X < 0 and Y/X~ 2(/+ 11

SS$_ROPRAND

MTH$_1NV ARGMA T

Angle Returned

7r /2 * (signY)

zATAN(Y/X)

7r * (signY) + zATAN(Y/X)

Reserved operand. The MTH$HA T AN2 routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Invalid argument. Both cosine and sine are zero.
LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector
CHF$L_MCH_SAVRO/R1. The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF$L_
MCH_SA VRO /R 1.

MTH$HATAND2

MTH$HATAND2 Arc Tangent in Degrees
(H-floating Value) with Two
Arguments

FORMAT

RETURNS

ARGUMENTS

Given sine and cosine, MTH$xHT AND2 returns the angle (in degrees)
whose tangent is given by the quotient of sine and cosine, (sine/cosine).

MTH$HATAND2 h-degrees ,sine ,cosine

None.

h-degrees
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Angle (in degrees) whose tangent is specified by (sine/cosine). The h­
degrees argument is the address of an H-floating number that is this angle.
MTH$HATAND2 writes the address of the angle into h-degrees.

sine
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Dividend. The sine argument is the address of a floating-point number that
is this dividend. For MTH$HATAND2, sine specifies an H-floating number.

cosine
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Divisor. The cosine argument is the address of a floating-point number that
is this divisor. For MTH$HATAND2, cosine specifies an H-floating number.

MTH-83

MTH$HATAND2

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH-84

The angle in degrees whose tangent is Y /Xis computed below. The value of
f is defined in the description of MTH$zCOSH.

Value of Input Arguments

X = 0 or Y/X > 2(/+1)

X > 0 and Y/X-5:. 2(J+1l

X < 0 and Y/X-5:. 2IJ+1l

SS$_ROPRAND

MTH$_1NV ARGMA T

Angle Returned

90 * (signY)

zAT AN D(Y / X)

180 * (signY) + zAT AN D(Y / X)

Reserved operand. The MTH$HA T AND2 routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a .floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Invalid argument. Both cosine and sine are zero.
LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector
CHF$L_MCH_SAVRO/R1. The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF$L _
MCH_SAVRO/R1.

MTH$HATANH

MTH$HATANH Hyperbolic Arc Tangent
(H-floating Value)

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

Given the hyperbolic tangent of an angle, the Hyperbolic Arc Tangent (H­
floating Value) routine returns the hyperbolic arc tangent (as an H..:floating
value) of that angle.

MTH$HATANH h-atanh ,hyperbolic-tangent

None.

h-atanh
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Hyperbolic arc tangent of the hyperbolic tangent specified by hyperbolic­
tangent. The h-atanh argumentis the address of an H-floating nuthber that
is this hyperbolic arc tangent. MTH$HATANH writes the address of the
hyperbolic arc tangent into h-atanh.

hyperbolic-tangent
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Hyperbolic tangent of an angle. The hyperbolic-tangent argumerit is the
address of a floating-point number that is this hyperbolic tangent, ,For
MTH$HATANH, hyperbolic-tangent specifies an H-floating number.

The hyperbolic arc tangent function is computed as follows:

Value of x

IXI < 1

1x1::::1

Value Returned

zATANH(X) = zLOG((X + 1)/(X -1))/2

An invalid argument is signaled

MTH-85

MTH$HATANH

CONDITION
VALUES
SIGNALED

MTH-86

SS$_ROPRAND

MTH$_1NV ARGMA T

Reserved operand. The MTH$xAT ANH routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Invalid argument: IX I 2'.: 1 . LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/R 1. The
result is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L _MCH _SA VRO /R 1 .

MTH$HCOS

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUE
SIGNALED

MTH$HCOS

Cosine of Angle Expressed in
Radians (H-floating Value)

The Cosine of Angle Expressed in Radians (H-floating Value) routine
returns the cosine of a given angle (in radians) as an H-floating value.

MTH$HCOS h-cosine ,angle-in-radians

MTH$HCOS_R5

None.

h-cosine
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Cosine of the angle specified by angle-in-radians. The h-cosine argument is
the address of an H-floating number that is this cosine. MTH$HCOS writes
the address of the cosine into h-cosine.

angle-in-radians
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The angle in radians. The angle-in-radians argument is the address of
a floating-point number. For MTH$HCOS, angle-in-radians specifies an
H-floating number.

See the MTH$xSINCOS routine for the algorithm used to compute the cosine.

SS$_ROPRAND Reserved operand. The MTH$HCOS procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH-87

MTH$HCOSD

MTH$HCOSD Cosine of Angle Expressed in
Degrees (H-floating 'Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUE
SIGNALED

MTH-88

The Cosine of Angle Expressed in Degrees (H-floating Value) routine
returns the cosine of a given angle (in degrees) as an H-floating value.

MTH$HCOSD h-cosine ,angle-in-degrees

MTH$HCOSD_R5

None.

h-cosine
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Cosine of the angle specified by angle-in-degrees. The h-cosine argument is
the address of an H-floating number that is this cosine. MTH$HCOSD writes
this cosine into h-cosine.

angle-in-degrees
VMS usage: floating_point
type: · H _floating
access: read only
mechanism: by reference

Angle (in degrees). The angle-in-degrees argument is the address of a
floating-point number. For MTH$HCOSD, angle-in-degrees specifies an
H-floating number.

See the MTH$SINCOSD routine for the algorithm used to compute the
cosine.

SS$_ROPRAND Reserved operand. The MTH$HCOSD procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH$HCOSH

MTH$HCOSH Hyperbolic Cosine (H-floating
Value)

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Hyperbolic Cosine routine returns the hyperbolic cosine of the input
value as an H-floating value.

MTH$HCOSH h-cosh ,floating-point-input-value

None.

h-cosh
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Hyperbolic cosine of the input value specified by floating-point-input-value.
The h-cosh argument is the address of an H-floating number that is this
hyperbolic cosine. MTH$HCOSH writes the address of the hyperbolic cosine
into h-cosh.

floating-point-input-value
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of
this input value. For MTH$HCOSH, floating-point-input-value specifies an
H-floating number.

Computation of the hyperbolic cosine depends on the magnitude of the
input argument. The range of the function is partitioned using four data­
type-dependent constants: a(z), b(z), and c(z). The subscript z indicates the
data type. The constants depend on the number of exponent bits (e) and the
number of fraction bits (f) associated with the data type (z).

The values of e and f are as follows:

e = 15

f = 113

MTH-89

MTH$HCOSH

CONDITION
VALUES
SIGNALED

MTH-90

The values of the constants in terms of e and f are:

Variable

a(z)

b(z)

c(z)

Value

rfl2

(! + 1)/2 * ln{2)
2e-l * ln{2)

Based on the above definitions, zCOSH(X) is computed as follows:

Value of X

IXI < a(z)

a(z)~IXI < .25

.25~IXI < b(z)

b{z)~IXI < c(z)

c(z)~IXI

SS$_ROPRAND

MTH$_FLOOVEMA T

Value Returned

Computed using a power series expansion in IXl 2

(zEXP(IXI) + 1/zEXP(IXl))/2

zEXP(IXl)/2

Overflow occurs

Reserved operand. The MTH$HCOSH procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in Math Library: the
absolute value of floating-point-input-value is
greater than about yyy; LIB$SIGNAL copies the
reserved operand to the signal mechanism vector.
The result is the reserved operand -0.0 unless a
condition handler changes the signal mechanism
vector. The value of yyy is 11356.523.

MTH$HEXP

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

MTH$HEXP

Exponential (H-floating Value)

The Exponential routine returns the exponential of the input value as an
H-floating value.

MTH$HEXP h-exp ,floating-point-input-value

MTH$HEXP_R6

None.

h-exp
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Exponential of the input value specified by floating-point-input-value.
The h-exp argument is the address of an H-floating number that is this
exponential. MTH$HEXP writes the address of the exponential into h-exp.

floating-point-input-value
VMS usage: floating_point
type: H _floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address
of a floating-point number. For MTH$HEXP, floating-point-input-value
specifies an H-floating number.

The exponential of xis computed as:

Value of x Value Returned

x > c(z) Overflow occurs

x::; - c(z) 0

lxl < 2-(/+11 1

Otherwise 2Y * 2U * 2W

where:

Y = INTEGER(x * ln2(E))

V = FRAC(x * ln2(E)) * 16

U = INTEGER(V)/16

MTH-91

MTH$HEXP

CONDITION
VALUES
SIGNALED

MTH-92

W = FRAC(V)/16

2W =polynomial approximation of degree 14 for z = H.

See also the section on the hyperbolic cosine for definitions of f and c(z).

SS$_RQPRAND

MTH$_FLOOVEMA T

MTH$_FLOUNDMA T

Reserved operand. The MTH$xEXP routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in Math Library: floating­
point-input-value is greater than yyy; LIB$SIGNAL
copies the reserved operand to the signal
mechanism vector. The result is the reserved
operand -0.0 unless a condition handler changes
the signal mechanism vector. The value. of yyy is
approximately 11355.830 for MTH$HEXP.

Floating-point underflow in Math Library: floating­
point-input-value is less than or equal to yyy and
the caller (CALL or JSB) has set hardware floating­
point underflow enable. The result is set to 0.0. If
the caller has not enabled floating-point underflow
(the default), a result of 0.0 is returned but no
error is signaled. The value of yyy is approximately
-11356.523 for MTH$HEXP.

MTH$HLOG

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

MTH$HLOG

Natural Logarithm (H-floating Value)

The Natural Logarithm (H-floating Value) routine returns the natural (base
e) logarithm of the input argument as an H-floating value.

MTH$HLOG h-natlog ,floating-point-input-value

MTH$HLOG_R8

None.

h-natlog
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Natural logarithm of floating-point-input-value. The h-natlog argument
is the address of an H-floating number that is this natural logarithm.
MTH$HLOG writes the address of this natural logarithm into h-natlog.

floating-point-input-value
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of
a floating-point number that is this value. For MTH$HLOG, floating-point­
input-value specifies an H-floating number.

Computation of the natural logarithm routine is based on the following:

1 ln(X * Y) = ln(X) + ln(Y)

2 In(l + x) = x - x 2 /2 + x 3 /3 - x 4 /4 ...
for IXI < 1

3 ln(X) = in(A) + 2 * (V + V 3 /3 + V 5 /5 + V 7 /7 ...)
where V = (X - A)/(X +A), A> 0,
and p(y) = 2 * (1 + y/3 + y2 /5 ...)

For x = 2n * f, where n is an integer and f is in the interval of 0.5 to 1,
define the following quantities:

If n~l, then N = n - 1 and F = 2f

If n::;O, then N = n and F = f

MTH-93

MTH$HLOG

CONDITION
VALUES
SIGNALED

MTH-94

From (1) above it follows that:

4 ln(X) = N * ln(2) + ln(F)

Based on the above relationships, zLOG is computed as follows:

1 If IF - ll < 2-5,
zLOG(X) = N * zLOG(2) + W + W * p(W),
where W = F-1.

2 Otherwise,
zLOG(X) = N * zLOG(2) + zLOG(A) + V * p(V2),
where V = (F - A)/(F +A) and A and zLOG(A)
are obtained by table look up.

SS$_ROPRAND

MTH$_LOGZERNEG

Reserved operand. The MTH$HLOG procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L _MCH_SA VRO /R 1. The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF$L _
MCH_SAVRO/R1.

MTH$HLOG2

MTH$HLOG2 Base 2 Logarithm (H-floating
Value)

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Base 2 Logarithm (H-floating Value) routine returns the base 2
logarithm of the input value specified by floating-point-input-value as
an H-floating value.

MTH$HLOG2 h-log2 ,floating-point-input-value

None.

h-log2
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Base 2 logarithm of floating-point-input-value. The h-log2 argument is the
address of an H-floating number that is this base 2 logarithm. MTH$HLOG2
writes the address of this logarithm into h-log2.

floating-point-input-value
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address
of a floating-point number that is this input value. For MTH$HLOG2,
floating-point-input-value specifies an H-floating number.

The base 2 logarithm function is computed as follows:

zLOG2(X) = zLOG2(E) * zLOG(X)

MTH-95

MTH$HLOG2

CONDITION
VALUES
SIGNALED

MTH-96

SS$_ROPRAND

MTH$_LQGZERNEG

Reserved operand. The MTH$HLOG2 procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVRO/R 1. The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF$L_
MCH_SAVRO/R 1.

MTH$HLOG10

MTH$HLOG10 Common Logarithm (H-floating
Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

The Common Logarithm (H-floating Value) routine returns the common
(base 10) logarithm of the input argument as an H-floating value.

MTH$H LOG 1 0 h-log 10, floating-point-input-value

MTH$HLOG1 O_R8

None.

h-log10
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Common logarithm of the input value specified by floating-point-input­
value. The h-log10 argument is the address of an H-floating number that is
this common logarithm. MTH$HLOG10 writes the address of the common
logarithm into h-loglO.

floating-point-input-value
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address
of a floating-point number. For MTH$HLOG10, floating-point-input-value
specifies an H-floating number.

The common logarithm function is computed as follows:

zLOGIO(X) = zLOGIO(E) * zLOG(X)

MTH-97

MTH$HLOG10

CONDITION
VALUES
SIGNALED

MTH-98

SS$_ROPRAND

MTH$_LOGZERNEG

Reserved operand. The MTH$HLOG 10 procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVRO/R1. The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF$L _
MCH_SA VRO /R 1.

MTH$HSIN

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUE
SIGNALED

MTH$HSIN

Sine of Angle Expressed in Radians
(H-floating Value)

The Sine of Angle Expressed in Radians (H-floating Value) routine returns
the sine of a given angle (in radians) as an H-floating value.

MTH$HSIN h-sine ,angle-in-radians

MTH$HSIN_R5

None.

h-sine
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

The sine of the angle specified by angle-in-radians. The h-sine argument is
the address of an H-floating number that is this sine. MTH$HSIN writes the
address of the sine into h-sine.

angle-in-radians
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Angle (in radians). The angle-in-radians argument is the address of a
floating-point number that is this angle. For MTH$HSIN, angle-in-radians
specifies an H-floating number.

See the MTH$SINCOS routine for the algorithm used to compute this sine.

SS$_ROPRAND Reserved operand. The MTH$HSIN procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH-99

MTH$HSIND

MTH$HSIND Sine of Angle Expressed in Degrees
(H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Sine of Angle Expressed in Degrees (H-floating Value) routine returns
the sine of a given angle (in degrees) as an H-floating value.

MTH$HSIND h-sine ,angle-in-degrees

MTH$HSIND_R5

None.

h-sine
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Sine of the angle specified by angle-in-degrees. The h-sine argument is the
address of an H-floating number that is this sine. MTH$HSIND writes the
address of the angle into h-sine.

angle-in-degrees
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Angle (in degrees). The angle-in-degrees argument is the address of a
floating-point number that is this angle. For MTH$HSIND, angle-in-degrees
specifies an H-floating number.

DESCRIPTION See MTH$SINCOSD for the algorithm used to compute the sine.

MTH-100

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_FLOUNDMA T

MTH$HSIND

Reserved operand. The ivlTH$HSIND procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased ecponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point underflow in Math Library. The
absolute value of the input angle is less than
180/7r * 2-m (where m = 16,384 for H-floating).

MTH-101

MTH$HSINH

MTH$HSINH Hyperbolic Sine (H-floating Value)

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

MTH-102

The Hyperbolic Sine (H-floating Value) routine returns the hyperbolic sine
of the input value specified by floating-point-input-value as an H-floating
value.

MTH$HSINH h-sinh ,floating-point-input-value

None.

h-sinh
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Hyperbolic sine of the input value specified by floating-point-input-value.
The h-sinh argument is the address of an H-floating number that is this
hyperbolic sine. MTH$HSINH writes the address of the hyperbolic sine into
h-sinh.

floating-point-input-value
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of
a floating-point number that is this value. For MTH$HSINH, floating-point­
input-value specifies an H-floating number.

Computation of the hyperbolic sine function depends on the magnitude of
the input argument. The range of the function is partitioned using four data
type dependent constants: a(z), b(z), and c(z). The subscript z indicates the
data type. The constants depend on the number of exponent bits (e) and the
number of fraction bits (f) associated with the data type (z).

The values of e and f are as follows:

e = 15

f = 113

CONDITION
VALUES
SIGNALED

MTH$HSINH

The values of the constants in terms of e and f are:

Variable

a(z)

b(z)

c(z)

Value

2(-/ /2)

(! + 1)/2 * ln(2)

2e-i * ln(2)

Based on the above definitions, zSINH(X) is computed as follows:

Value of X

IXI < a(z)

a(z)::;IXI < LO

i.o::;jXI < b(z)

b(z)::;jXj < c(z)

c(z)::;IXI

SS$_ROPRAND

MTH$_FLOOVEMA T

Value Returned

x
zSINH(X) is computed using a power series
expansion in IXl2

(zEXP(X) - zEXP(-X))/2

SIGN(X) * zEXP(IXl)/2

Overflow occurs

Reserved operand. The MTH$HSINH procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in Math Library: the
absolute value of floating-point-input-value
is greater than yyy. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/R 1. The
result is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/R 1. The value of yyy is
approximately 11356.523.

MTH-103

MTH$HSQRT

MTH$HSQRT Square Root (H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

MTH-104

The Square Root (H-floating Value) routine returns the square root of the
input value floating-point-input-value as an H-floating value.

MTH$HSQRT h-sqrt ,floating-point-input-value

MTH$HSQRT_R8

None.

h-sqrt
VMS usage: floating_point
type: H_floating
access: write. only
mechanism: by reference

Square root of the input value specified by floating-point-input-value. The
h-sqrt argument is the address of an H-floating number that is this square
root. MTH$HSQRT writes the address of the square root into h-sqrt.

floating-point-input-value
VMS usage: floating_point
type: H _floating
access: read only
mechanism: by reference

Input value. The floating-point-input-value argument is the address of
a floating-point number that contains this input value. For MTH$HSQRT,
floating-point-input-value specifies an H-floating number.

The square root of Xis computed as follows:

If X < 0, an error is signaled.

Let X = 2K * F

where:

K is the exponential part of the floating-point data

F is the fractional part of the floating-point data

If K is even:
x = 212•P) * F,
zSQRT(X) = 2P * zSQRT(F),
1/2$F < 1, where P = K/2

CONDITION
VALUES
SIGNALED

MTH$HSQRT

If K is odd:
x = 2(2*P+1) * F = 2(2*P+2) * (F /2),
zSQRT(X) = 2IP+ll * zSQRT(F /2),
1/45:.F/2 < 1/2, where p = (K-1)/2

Let F' = A * F + B, when K is even:

A = 0.95F6198 (hex)

B = 0.6BA5918 (hex)

Let F' =A* (F /2) + B, when K is odd:

A= O.D413CCC (hex)

B = 0.4C 1 E248 (hex)

Let K' = P, when K is even

Let K' = P+1, when K is odd

Let Y[O] = 2K' * F' be a straight line approximation within the given interval
using coefficients A and B which minimize the absolute error at the midpoint
and endpoint.

Starting with Y[O], n Newton-Raphson iterations are performed:

Y[n + 1] = 1/2 * (Y[n] + X/Y[n])

where n = 5 for H-floating.

SS$_ROPRAND

MTH$_SQUROONEG

Reserved operand. The MTH$HSORT procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Square root of negative number. Argument
floating-point-input-value is less than 0.0.
LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector
CHF$L _MCH _SA VRO /R 1 . The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF$L_
MCH _SA VRO /R 1 .

MTH-105

MTH$HTAN

MTH$HT AN Tangent of Angle Expressed in
Radians (H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

MTH-106

The Tangent of Angle Expressed in Radians (H-floating Value) routine
returns the tangent of a given angle (in radians) as an H-floating value.

MTH$HTAN h-tan ,angle-in-radians

MTH$HTAN_R5

None.

h-tan
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Tangent of the angle specified by angle-in-radians. The h-tan argument is
the address of an H-floating number that is this tangent. MTH$HTAN writes
the address of the tangent into h-tan.

angle-in-radians
VMS usage: floating_point
type: H _floating
access: read only
mechanism: by reference

The input angle (in radians). The angle-in-radians argument is the address of
a floating-point number that is this angle. For MTH$HTAN, angle-in-radians
specifies an H-floating number.

When the input argument is expressed in radians, the tangent function is
computed as follows:

1 If IXI < 2<-112>, then zTAN(X) = X (see the section on MTH$zCOSH
for the definition of f)

2 Otherwise, call MTH$zSINCOS to obtain zSIN(X) and zCOS(X); then

a. If zCOS(X) = 0, signal overflow

b. Otherwise, zT AN(X) = zSI N(X)/ zCOS(X)

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_FLOOVEMAT

MTH$HTAN

Reserved operand. The MTH$HTAN procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in math library.

MTH-107

MTH$HTAND

MTH$HTAND Tangent of Angle Expressed in
Degrees (H-floating Value)

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

MTH-108

The Tangent of Angle Expressed in Degrees (H-floating Value) routine
returns the tangent of a given angle (in degrees) as an H-floating value.

MTH$HTAND h-tan ,angle-in-degrees

MTH$HTAND_R5

None.

h-tan
VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Tangent of the angle specified by angle-in-degrees. The h-tan argument
is the address of an H-floating number that is this tangent. MTH$HTAND
writes the address of the tangent into h-tan.

angle-in-degrees
VMS usage: floating_point
type: H_floating
access: read on'y
mechanism: by reference

The input angle (in degrees). The angle-in-degrees argument is the address
of a floating-point number which is this angle. For MTH$HTAND, angle-in­
degrees specifies an H-floating number.

When the input argument is expressed in degrees, the tangent function is
computed as follows:

1 If IXI < (180/7r)*2<-2/(e-l)) and underflow signaling is enabled, underflow
is signaled (see the section on MTH$zCOSH for the definition of e).

2 Otherwise, if IXI < (180/7r) *2(-f/2), then zTAND(X) = (7r/l80) *X. See
the description of MTH$zCOSH for the definition off.

3 Otherwise, call MTH$zSINCOSD to obtain zSIND(X) and zCOSD(X).

a. Then, if zCOSD(X) = 0, signal overflow

b. Else, zT AN D(X) = zSI N D(X)/ zCOSD(X)

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_FLOOVEMA T

MTH$HTAND

Reserved operand. The MTH$HT AND procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in math library.

MTH-109

MTH$HTANH

MTH$HTANH Compute the Hyperbolic Tangent
(H-floating Value)

FORMAT

The Compute the Hyperbolic Tangent (H-floating Value) routine returns the
hyperbolic tangent of the input value as an H-floating value.

MTH$HTANH h-tanh ,floating-point-input-value

RETURNS None.

ARGUMENTS

DESCRIPTION

MTH-110

h-tanh
VMS usage:
type:
access:
mechanism:

floating_point
H_floating
write only
by reference

Hyperbolic tangent of the value specified by floating-point-input-value. The
h-tanh argument is the address of a H-floating number that is this hyperbolic
tangent. MTH$HTANH writes the address of the hyperbolic tangent into
h-tanh.

floating-point-input-value
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The input value. The floating~point-input-value argument is the address of
a floating-point number that contains this input value. For MTH$HTANH,
floating-point-input-value specifies an H-floating number.

For MTH$HTANH, the hyperbolic tangent of X is computed using a value of
56 for g and a value of 40 for h. The hyperbolic tangent of X is computed as
follows:

Value of x

1x19-g
rg < 1x1:::;0.25

0.25 < IXI < h

h:::;IXI

Hyperbolic Tangent Returned

x
zSI N H(X)/ zCOSH(X)

(zEXP(2 * X) - 1)/(zEXP(2 * X) + 1)

sign(X) * 1

CONDITION
VALUE
SIGNALED

SS$_RQPRAND

MTH$HTANH

Reserved operand. The MTH$HTANH procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH-111

MTH$xlMAG

MTH$x1MAG Imaginary Part of a Complex
Number

FORMAT

RETURNS

ARGUMENT

CONDITION
VALUE
SIGNALED

MTH-112

The Imaginary Part of a Complex Number routine returns the imaginary
part of a complex number.

MTH$AIMAG
MTH$DIMAG
MTH$GIMAG

complex-number
complex-number
complex-number

Each of the above three formats corresponds to one of the three floating-point
complex types.

VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: write only
mechanism: by value

Imaginary part of the input complex-number. MTH$AIMAG returns an F­
floating number. MTH$DIMAG returns a D-floating number. MTH$GIMAG
returns a G-floating number.

complex-number
VMS usage: complex_number
type: F _floating complex, D_floating complex,

G_floating complex
access: read only
mechanism: by reference

The input complex number. The complex-number argument is the address
of this floating-point complex number. For MTH$AIMAG, complex-number
specifies an F-floating number. For MTH$DIMAG, complex-number specifies
a D-floating number. For MTH$GIMAG, complex-number specifies a G­
floating number.

SS$_ROPRAND Reserved operand. The MTH$xlMAG routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

EXAMPLE

C+
C This FORTRAN example forms the imaginary part of
C a G-f loating complex number using MTH$GIMAG
C and the FORTRAN random number generator
C RAN.
c
C Declare Z as a complex value and MTH$GIMAG as
C a REAL*8 value. MTH$GIMAG will return the imaginary
C part of Z: Z_NEW = MTH$GIMAG(Z).
c-

C+

COMPLEX*16 Z
COMPLEX*16 DCMPLX
REAL*8 R,I,MTH$GIMAG
INTEGER M
M = 1234567

C Generate a random complex number with the
C FORTRAN generic CMPLX.
c-

C+

R = RAN(M)
I = RAN(M)
Z = DCMPLX(R,I)

C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
c-

TYPE*· 'The complex number z is',z
TYPE *· ' It has imaginary part' ,MTH$GIMAG(Z)
END

MTH$xlMAG

This FORTRAN example demonstrates a procedure call to MTH$GIMAG.
Because this example uses G-floating numbers, it must be compiled with the
statement "FORTRAN/G filename".

The output generated by this program is as follows:

The complex number z is (0.8535407185554504,0.2043401598930359)
It has imaginary part 0.2043401598930359

MTH-113

MTH$xLOG

MTH$xLOG Natural Logarithm

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Natural Logarithm routine returns the natural (base e) logarithm of the
input argument.

MTH$ALOG
MTH$DLOG
MTH$GLOG

floating-point-input-value
floating-point-input-value
floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

MTH$ALOG_R5
MTH$DLOG_R8
MTH$GLOG_R8
Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: write only
mechanism: by value

The natural logarithm of floating-point-input-value. MTH$ALOG returns an
F-floating number. MTH$DLOG returns a D-floating number. MTH$GLOG
returns a G-floating number.

floating-point-input-value
VMS usag_e: floating_point
type: F _floating, D_floating, G_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address
of a floating-point number that is this value. For MTH$ALOG, floating­
point-input-value specifies an F-floating number. For MTH$DLOG,
floating-point-input-value specifies a D-floating number. For MTH$GLOG,
floating-point-input-value specifies a G-floating number.

DESCRIPTION Computation of the natural logarithm routine is based on the following:

1 ln(X * Y) = ln(X) + ln(Y)

MTH-114

2 In(l + X) = x - x 2 /2 + x 3 /3 - x 4 /4 ...
for IXI < 1

3 ln(X) = In(A) + 2 * (V + V 3 /3 + V 5 /5 + V 7 /7 ...)
= ln(A) + V * p(V2), where V = (X - A)/(X +A),
A> 0, and p(y) = 2 * (1 + y/3 + y2/5 ...)

CONDITION
VALUES
SIGNALED

MTH$xLOG

For x = 2n * f, where n is an integer and f is in the interval of 0.5 to l,
define the following quantities:

If n~l, then N = n - 1 and F = 2f

If n~O, then N = n and F = f

From (1) above it follows that:

4 ln(X) = N * ln(2) + ln(F)

Based on the above relationships, zLOG is computed as follows:

1 If IF - ll < 2-5 , zLOG(X) = N * zLOG(2) + W + W * p(W),
where W = F-1.

2 Otherwise, zLOG(X) = N * zLOG(2) + zLOG(A) + V * p(V2),
where V = (F -A)/(F +A) and A and zLOG(A)
are obtained by table look up.

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HLOG.

SS$_ROPRAND

MTH$_LQGZERNEG

Reserved operand. The MTH$xLOG procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L _MCH_SA VRO /R 1. The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF$L_
MCH_SAVRO/R 1.

MTH-115

MTH$xLOG2

MTH$xLOG2 Base 2 Logarithm

FORMAT

RETURNS ,

ARGUMENTS

DESCRIPTION

MTH-116

The Base 2 Logarithm routine returns the base 2 logarithm of the input
value specified by floating-point-input-value.

MTH$ALOG2
MTH$DLOG2
MTH$GLOG2

floating-point-input-value
floating-point-input-value
floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, O_floating, G_floating
access: write only
mechanism: by value

The base 2 logarithm of floating-point-input-value. MTH$ALOG2
returns an F-floating number. MTH$DLOG2 returns a D-floating number.
MTH$GLOG2 returns a G-floating number.

floating-point-input-value
VMS usage: floating_point
type: f _floating, O_floating, G_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of
a floating-point number that is this input value. For MTH$ALOG2, floating­
point-input-value specifies an F-floating number. For MTH$DLOG2,
floating-point-input-value specifies a D-floating number. For MTH$GLOG2,
floating-point-input-value specifies a G-floating number.

The base 2 logarithm function is computed as follows:

zLOG2(X) = zLOG2(E) * zLOG(X)

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HLOG2.

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_LOGZERNEG

MTH$xLOG2

Reserved operand. The MTH$xLOG2 procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVRO/A1. The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF$L_
MCH_SAVRO/R1.

IVITH~117

MTH$xLOG10

MTH$xLOG10 Common Logarithm

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

MTH-118

The Common Logarithm routine returns the common (base 10) logarithm
of the input argument.

MTH$ALOG10
MTH$DLOG10
MTH$GLOG10

floating-point-input-value
floating-point-input-value
floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

MTH$ALOG1 O_R5
MTH$DLOG1 Q_R8
MTH$GLOG1 Q_R8
Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: write only
mechanism: by value

The common logarithm of floating-point-input-value. MTH$ALOG 10
returns an F-floating number. MTH$DLOG10 returns a D-floating number.
MTH$GLOG10 returns a G-floating number.

floating-point-input-value
VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address
of a floating-point number. For MTH$ALOG10, floating-point-input-value
specifies an F-floating number. For MTH$DLOG10, floating-point-input­
value specifies a D-floating number. For MTH$GLOG10, floating-point­
input-value specifies a G-floating number.

The common logarithm function is computed as follows:

zLOGlO(X) = zLOGlO(E) * zLOG(X)

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HLOG10.

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_LQGZERNEG

MTH$xLOG10

Reserved operand. The MTH$xLOG 10 procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVRO/R 1. The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF$L _
MCH_SAVRO/R1.

MTH-119

MTH$RANDOM

MTH$RANDOM Random Number Generator,
Uniformly Distributed

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

MTH-120

The Random Number Generator, Uniformly Distributed routine is a general
random number generator.

MTH$RANDOM seed

VMS usage: floating_point
type: F _floating
access: write only
mechanism: by value

MTH$RANDOM returns an F-floating random number.

seed
VMS usage:
type:
access:
mechanism:

longword_unsigned
longword (unsigned)
modify
by reference

The integer seed, a 32-bit number whose high-order 24 bits are converted by
MTH$RANDOM to an F-floating random number. The seed argument is the
address of an unsigned longword that contains this integer seed. The seed is
modified by each call to MTH$RANDOM.

This routine must be called again to obtain the next pseudorandom number.
The seed is updated automatically.

The result is a floating-point number that is uniformly distributed between
0.0 inclusively and 1.0 exclusively.

There are no restrictions on the seed, although it should be initialized
to different values on separate runs in order to obtain different random
sequences. MTH$RANDOM uses the following method to update the seed
passed as the argument:

SEED= (69069 *SEED+ l)(modulo232)

CONDITION
VALUE
SIGNALED

EXAMPLE

SS$_ROPRAND

RAND: PROCEDURE OPTIONS (MAIN);
DECLARE FOR$SECNDS ENTRY (FLOAT BINARY (24))

RETURNS (FLOAT BINARY (24));
DECLARE MTH$RANDOM ENTRY (FIXED BINARY (31))

RETURNS (FLOAT BINARY (24));
DECLARE TIME FLOAT BINARY (24);
DECLARE SEED FIXED BINARY (31);
DECLARE I FIXED BINARY (7);
DECLARE RESULT FIXED DECIMAL (2);

/* Get floating random time value */
TIME= FOR$SECNDS (OEO);

/* Convert to fixed */
SEED = TIME;

MTH$RANDOM

Reserved operand. The MTH$RANDOM procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

/* Generate 100 random numbers between 1 and 10 */
DO I = 1 TO 100;

RESULT= 1 +FIXED ((10EO * MTH$RANDOM (SEED)) ,31);
PUT LIST (RESULT);
END;

END RAND;

7 4 6 5 9
4 4 2 4 4
1 10 10 6 7
6 2 3 6 10
8 5 4 9 8
1 2 2 3 6
3 8 1 5

This PL/I program demonstrates the use of MTH$RANDOM. The value
returned by FOR$SECNDS is used as the seed for the random-number
generator to insure a different sequence each time the program is run. The
random value returned is scaled so as to represent values between 1 and 10.

Because this program· generates random numbers, the output generated will
be different each time the program is executed. One example of the outut
generated by this program is as follows:

10 5 5 3 8 8 3 1 3 2
8 3 8 9 1 7 1 8 6 9 10
3 2 2 1 2 6 6 3 9 5 8
8 5 5 4 2 8 5 9 6 4 2
7 6 6 8 10 9 5 9 4 5 7
5 2 3 4 4 8 9 2 8 5 5

MTH-121

MTH$xREAL

MTH$xREAL Real Part of a Complex Number

FORMAT

RETURNS

ARGUMENT

CONDITION
VALUE
SIGNALED

MTH-122

The Real Part of a Complex Number routine returns the real part of a
complex number.

MTH$REAL complex-number
MTH$DREAL complex-number
MTH$GREAL complex-number
Each of the above three formats accepts as input one of the three floating­
point complex types.

VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: write only
mechanism: by value

Real part of the complex number. MTH$REAL returns an F-floating number.
MTH$DREAL returns a D-floating number. MTH$GREAL returns a G­
floating number.

complex-number
VMS usage: complex_number
type: f _floating complex, D_floating complex, G_floating

complex
access: read only
mechanism: by reference

The complex number whose real part is returned by MTH$REAL. The
complex-number argument is the address of this floating-point complex
number. For MTH$REAL, complex-number is an F-floating complex number.
For MTH$DREAL, complex-number is a D-floating complex number. For
MTH$GREAL, complex-number is a G-floating complex number.

SS$_ROPRAND Reserved operand. The MTH$xREAL procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

EXAMPLE

C+
C This FORTRAN example forms the real
C part of an F-floating complex number using
C MTH$REAL and the FORTRAN random number
C generator RAN.
c
C Declare Z as a complex value and MTH$REAL as a
C REAL*4 value. MTH$REAL will return the real
c part of Z: Z_NEW = MTH$REAL(Z).
c-

C+

COMPLEX Z
COMPLEX CMPLX
REAL*4 MTH$REAL
INTEGER M
M = 1234567

C Generate a random complex number with the FORTRAN
C generic CMPLX.
c-

Z = CMPLX(RAN(M),RAN(M))

C+
C Z is -a complex number (r,i) with real part "r" and imaginary
C part "i".
c-

TYPE *· ' The complex number z is' ,z
TYPE *· ' It has real part' ,MTH$REAL(Z)
END

MTH$xREAL

This FORTRAN example demonstrates the use of MTH$REAL. The output of
this program is as follows:

The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407

MTH-123

MTH$xSIN

MTH$xSIN Sine of Angle Expressed in Radians

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

MTH-124

The Sine of Angle Expressed in Radians routine returns the sine of a given
angle (in radians).

MTH$SIN angle-in-radians
MTH$DSIN angle-in-radians
MTH$GSIN angle-in-radians

Each of the above formats accepts as input one of the floating-point types.

MTH$SIN_R4
MTH$DSIN_R7
MTH$GSIN_R7
Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, O_floating, G_floating
access: write only
mechanism: by value

Sine of the angle specified by angle-in-radians. MTH$SIN returns an F­
floating number. MTH$DSIN returns a D-floating number. MTH$GSIN
returns a G-floating number.

angle-in-radians
VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: read only
mechanism: by reference

Angle (in radians). The angle-in-radians argument is the address of a
floating-point number that is this angle. For MTH$SIN, angle-in-radians
specifies an F-floating number. For MTH$DSIN, angle-in-radians specifies a
D-floating number. For MTH$GSIN, angle-in-radians specifies a G-floating
number.

See the MTH$SINCOS routine for the algorithm used to compute this sine.

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HSIN.

CONDITION
VALUE
SIGNALED

SS$_ROPRAND

MTH$xSIN

Reserved operand. The MTH$xSIN procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH-125

MTH$xSI NCOS

MTH$xSINCOS Sine and Cosine of Angle
Expressed in Radians

FORMAT

jsb entries

RETURNS

ARGUMENTS

MTH-126

The Sine and Cosine of Angle Expressed in Radians routine returns the
sine and cosine of a given angle (in radians).

MTH$SINCOS angle-in-radians ,sine ,cosine
MTH$DSINCOS
MTH$GSINCOS
MTH$HSINCOS

angle-in-radians ,sine ,cosine
angle-in-radians ,sine ,cosine
angle-in-radians ,sine ,cosine

Each of the above four formats accepts as input one of the four floating-point
types.

MTH$SI NCOS_R5
••TLI~"'~•l\1,...n~ o-,
IVI I n~Ll'11 l""'V~-n I

MTH$GSI NCQS_R7
MTH$HSINCOS_R7
Each of the above four JSB entries accepts as input one of the four floating­
point types.

MTH$SINCOS, MTH$DSINCOS, MTH$GSINCOS, and MTH$HSINCOS
return the sine and cosine of the input angle by reference in the sine and
cosine arguments.

angle-in-radians
VMS usage: floating_point
type: f _floating, D_floating, G_floating, H_floating
access: read only
mechanism: by reference

Angle (in radians) whose sine and cosine are to be returned. The angle­
in-radians argument is the address of a floating-point number that
is this angle. For MTH$SINCOS, angle-in-radians is an F-floating
number. For MTH$DSINCOS, angle-in-radians is a D-floating number.
For MTH$GSINCOS, angle-in-radians is a G-floating number. For
MTH$HSINCOS, angle-in-radians is an H-floating number.

sine
VMS usage: floating_point
type: f _floating, D_floating, G_floating, H_floating
access: write only
mechanism: by reference

Sine of the angle specified by angle-in-radians. The sine argument is the
address of a floating-point number. MTH$SINCOS writes an F-floating

DESCRIPTION

MTH$xSI NCOS

number into sine. MTH$DSINCOS writes a D-floating number into sine.
MTH$GSINCOS writes a G-floating number into sine. MTH$HSINCOS
writes an H-floating number into sine.

cosine
VMS usage: floating_point
type: f _floating, D_floating, G_floating, H_floating
access: write only
mechanism: by reference

Cosine of the angle specified by angle-in-radians. The cosine argument is
the address of a floating-point number. MTH$SINCOS writes an F-floating
number into cosine. MTH$DSINCOS writes a D-floating number into cosine.
MTH$GSINCOS writes a G-floating number into cosine. MTH$HSINCOS
writes an H-floating number into cosine.

All routines with JSB entry points accept a single argument in RO:Rm, where
m, which is defined below, is dependent on the data type.

Data Type m

F_floating 0

D_floating

G_floating 1

H_floating 3

In general, Run-Time Library routines with JSB entry points return one value
in RO:Rm. The MTH$SINCOS routine returns two values, however. The sine
of angle-in-radians is returned in RO:Rm and the cosine of angle-in-radians
is returned in (R <m+l> :R <2*m+l>).

In radians, the computation of zSIN(X) and zCOS(X) is based on the following
polynomial expansions:

sin(X) = X - X 3 /(3!) + X 5 /(5!) - X 7 /(7!) ...
= X + X * P(X2), where
P(y) = y/(3!) + y2 /(5!) + y3 /(7!) ...

cos(X) = 1-X2/(2!) +x4/(4!)-X6/(6!) ...
= Q(X2), where
Q(y) = (1- y/(2!) + y2/(4!) + y3 /(6!) ...)

1 If IXI < 2<-f 12>,
then zSIN(X) = X and zCOS(X) = 1
(see the section on MTH$zCOSH for
the definition of f)

2 If rt 12 ~1XI < 7r/4,
then zSIN(X) = X + P(X2)

and zCOS(X) = Q(X2)

3 If 7r/4~IXI and x > o,
a. Let J = INT(X/(7r/4))

and I = J modulo 8

MTH-127

MTH$xSINCOS

b. If J is even, let Y = X - J * (7r/4)
otherwise,
let Y = (J + 1) * (7r / 4) - x

With the above definitions, the following table relates zSIN(X)
and zCOS(X) to zSIN(Y) and zCOS(Y):

Value of I zSIN(X) zCOS(X)

0 zSIN(Y) zCOS(Y)

1 zCOS(Y) zSIN(Y)

2 zCOS(Y) -zSIN(Y)

3 zSIN(Y) -zCOS(Y)

4 -zSIN(Y) -zCOS(Y)

5 -zCOS(Y) -zSIN(Y)

6 -zCOS(Y) zSIN(Y)

7 -zSIN(Y) zCOS(Y)

c. zSIN(Y) and zCOS(Y) are computed as follows:
,,,QTl\.T(V\ - V .;..L... p(y2\
wV.1. ..L •\.I. j - .._ .1 .._ ,.._ j)

and zCOS(Y) = Q(Y2)

4 If 7r/4~IXI and x < o,
then zSIN(X) = -zSIN(IXI)
and zCOS(X) = zCOS(IXI)

CONDITION
VALUE
RETURNED

SS$_ROPRAND Reserved operand. The MTH$xSINCOS procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH-128

MTH$xSINCOSD

MTH$xSINCOSD Sine and Cosine of Angle
Expressed in Degrees

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Sine and Cosine of Angle Expressed in Degrees routine returns the
sine and cosine of a given angle (in degrees).

MTH$SINCOSD angle-in-degrees ,sine ,cosine
MTH$DSINCOSD angle-in-degrees ,sine ,cosine
MTH$GSINCOSD angle-in-degrees ,sine ,cosine
MTH$HSINCOSD angle-in-degrees ,sine ,cosine
Each of the above four formats accepts as input one of the four floating-point
types.

MTH$SI NCOSD_R5
MTH$DSI NCOSD_R7
MTH$GSINCOSD_R7
MTH$HSI NCOSD_R7
Each of the above four JSB entries accepts as input one of the four floating­
point types.

MTH$SINCOSD, MTH$DSINCOSD, MTH$GSINCOSD, and
MTH$HSINCOSD return the sine and cosine of the input angle by reference
in the sine and cosine arguments.

angle-in-degrees
VMS usage: floating_point
type: f_floating, O_floating, G_floating, H_floating
access: read only
mechanism: by reference

Angle (in degrees) whose sine and cosine are returned by MTH$xSINCOSD.
The angle-in-degrees argument is the address of a floating-point number
that is this angle. For MTH$SINCOSD, angle-in-degrees is an F-floating
number. For MTH$DSINCOSD, angle-in-degrees is a D-floating number.
For MTH$GSINCOSD, angle-in-degrees is a G-floating number. For
MTH$HSINCOSD, angle-in-degrees is an H-floating number.

sine
VMS usage: floating_point
type: f_floating, O_floating, G_floating, H_floating
access: write only
mechanism: by reference

Sine of the angle specified by angle-in-degrees. The sine argument is the
address of a floating-point number. MTH$SINCOSD writes an F-floating

MTH-129

MTH$xSINCOSD

DESCRIPTION

MTH-130

number into sine. MTH$DSINCOSD writes a D-floating number into sine.
MTH$GSINCOSD writes a G-floating number into sine. MTH$HSINCOSD
writes an H-floating number into sine.

cosine
VMS usage: floating_point
type: f _floating, O_floating, G_floating, H_floating
access: write only
mechanism: by reference

Cosine of the angle specified by angle-in-degrees. The cosine argument
is the address of a floating-point number. MTH$SINCOSD writes an F­
floating number into cosine. MTH$DSINCOSD writes a D-floating number
into cosine. MTH$GSINCOSD writes a G-floating number into cosine.
MTH$HSINCOSD writes an H-floating number into cosine.

All routines with JSB entry points accept a single argument in RO:Rm, where
m, which is defined below, is dependent on the data type.

Data Type m

F_floating 0

D_floating

G_floating 1

H_floating 3

In general, Run-Time Library routines with JSB entry points return one value
in RO:Rm. The MTH$SINCOSD mutine returns two values, however. The
sine of angle-in-degrees is returned in RO:Rm and the cosine of angle-in­
degrees is returned in (R <m+l> :R <2•m+l>).

In degrees, the computation of zSIND(X) and zCOSD(X) is based on the
following polynomial expansions:

SIND(X) = (C * X) - (C * X)3 /(3!)+
(C * X)5 /(5!) - (C * x)7 /(7!) ...
= X/26 + X * P(X2), where
P(y) = -y/(3!) + y2 /(5!) - y3 /(7!) ...

COSD(X) = 1- (C * X) 2 /(2!)+
(C * X)4 /(4!) - (C * X) 6 /(6!) ...
= Q(X2), where
Q(y) = 1 - y/(2!) + y2 /(4!) - y3 /(6!) ...
and C = 7r/180

1 If IXI < (180/7r) * 2-2
e-i and underflow signaling is enabled,

underflow is signaled for zSIND(X) and zSINCOSD(X).
See MTH$zCOSH for the definition of e.

OTHERWISE:

2 If IXI < (180/7r) * 2<-f/2),
then zSIND(X) = (7r/180) * X and zCOSD(X) = 1.
(See MTH$zCOSH for the definition of f.)

CONDITION
VALUES
SIGNALED

MTH$xSINCOSD

3 If (180/7r) * 2<-f / 2) ~ IXI < 45
then zSI N D(X) = X/26 + P(X2)
and zCOSD(X) = Q(X2)

4 If 45~IXI and x > o,
a. Let J = JNT(X/(45))and

I= J modulo 8

b. If J is even, let Y = X - J * 45;
otherwise, let Y = (J + 1) * 45 - X.

c.

d.

With the above definitions, the following table relates
zSIND(X) and zCOSD(X) to zSIND(Y) and zCOSD(Y):

Value of I zSIND(X) zCOSD(X)

0 zSIND(Y) zCOSD(Y)

1 zCOSD(Y) zSIND(Y)

2 zCOSD(Y) -zSIND(Y)

3 zSIND(Y) -zCOSD(Y)

4 -zSIND(Y) -zCOSD(Y)

5 -zCOSD(Y) -zSIND(Y)

6 -zCOSD(Y) zSIND(Y)

7 -zSIND(Y) zCOSD(Y)

zSIND(Y) and zCOSD(Y) are computed as follows:
zSIND(Y) = Y/26 + P(Y2)
zCOSD(Y) = Q(Y2)

If 45~ IXI and X < 0,
then zSIND(X) = -zSIND(IXI)
and zCOSD(X) = zCOSD(IXI)

SS$_RQPRAND Reserved operand. The MTH$xSINCOSD
procedure encountered a floating-point reserved
operand due to incorrect user input. A floating­
point reserved operand is a floating-point datum
with a sign bit of 1 and a biased exponent of zero.
Floating-point reserved operands are reserved for
future use by DIGIT AL.

MTH$_FLOUNDMA T Floating-point underflow in math library. The
absolute value of the input angle is less than
180/7r * 2-m (where m = 128 for F-floating and
0-floating, 1,024 for G-floating, and 16,384 for
H-floating).

MTH-131

MTH$xSIND

MTH$xSIND Sine of Angle Expressed in Degrees

FORMAT

jsb entries

RETURNS

ARGUMENTS

The Sine of Angle Expressed in Degrees routine returns the sine of a given
angle (in degrees).

MTH$SIND angle-in-degrees
MTH$DSI ND angle-in-degrees
MTH$GSIND angle-in-degrees
Each of the above formats accepts as input one of the floating-point types.

MTH$SIND_R4
MTH$DSIND_R7
MTH$GSIND_R7
Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, D,;_floating, G_floating
access: write only
mechanism: by value

The sine of the angle. MTH$SINO returns an F-floating number.
MTH$0SINO returns a 0-floating number. MTH$GSINO returns a G-floating
number.

angle-in-degrees
VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: read only
mechanism: by reference

Angle (in degrees). The angle-in-degrees argument is the address of a
floating-point number that is this angle. For MTH$SINO, angle-in-degrees
specifies an F-floating number. For MTH$0SINO, angle-in-degrees specifies
a 0-floating number. For MTH$GSINO, angle-in-degrees specifies a G­
floating number.

DESCRIPTION See MTH$SINCOSO for the algorithm that is used to compute the sine.

MTH-132

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HSINO.

CONDITION
VALUES
SIGNALED

SS$_ROPRAND

MTH$_FLOUNDMA T

MTH$xSIND

Reserved operand. The MTH$SIND procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased ecponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point underflow in math library. The
absolute value of the input angle is less than
180/7r * rm (where m = 128 for F-floating and
0-floating, and 1,024 for G-floating).

MTH-133

MTH$xSINH

MTH$xSINH Hyperbolic Sine

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

MTH-134

The Hyperbolic Sine routine returns the hyperbolic sine of the input value
specified by floating-point-input-value.

MTH$SINH floating-point-input-value
MTH$DSINH floating-point-input-value
MTH$GSINH floating-point-input-value
Each of the above formats accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, O_floating, G_floating
access: write only
mechanism: by value

The hyperbolic sine of f!oating-point-input-nlue, MTH$SINH returns an
F-floating number. MTH$DSINH returns a D-floating number. MTH$GSINH
returns a G-floating number.

floating-point-input-value
VMS usage: floating_point
type: f _floating, O_floating, G_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address
of a floating-point number that is this value. For MTH$SINH, floating­
point-input-value specifies an F:-floating number. For MTH$DSINH,
floating-point-input-value specifies a D-floating number. For MTH$GSINH,
floating-point-input-value specifies a G-floating number.

Computation of the hyperbolic sine function depends on the magnitude of
the input argument. The range of the function is partitioned using four data
type dependent constants: a(z), b(z), and c(z). The subscript z indicates the
data type. The constants depend on the number of exponent bits (e) and the
number of fraction bits (f) associated with the data type (z).

The values of e and f are:

z e f

F 8 24

D 8 56

G 11 53

CONDITION
VALUES
SIGNALED

MTH$xSINH

The values of the constants in terms of e and fare:

Variable

a(z)

b(z)

c(z)

Value

2(-/ /2)

CEILING[(! + 1)/2 * ln{2)]

{2(e- 1) * ln{2))

Based on the above definitions, zSINH(X) is computed as follows:

Value of X Value Returned

IXI < a(z) x
a(z) ~ IXI < 1.0 zSINH(X) is computed using a

power series expansion in IXl2

1.0 ~ IXI < b(z) (zEXP(X) - zEXP(-X))/2

b(z) ~ IXI < c(z) SIGN(X) * zEXP(IXl)/2

c(z) ~ IXI Overflow occurs

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HSINH.

SS$_ROPRAND

MTH$_FLOOVEMA T

Reserved operand. The MTH$xSINH procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in Math Library: the
absolute value of floating-point-input-value
is greater than yyy. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVRO/R1. The
result is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVRO/R1.

The values of yyy are approximately:

MTH$SINH-88. 722
MTH$DSINH-88. 722
MTH$GSINH-709. 782

MTH-135

MTH$xSQRT

MTH$xSQRT Square Root

FORMAT

jsb entries

RETURNS

ARGUMENTS

DESCRIPTION

MTH-136

The Square Root routine returns the square root of the input value
floating-point-input-value.

MTH$SQRT floating-point-input-value
MTH$DSQRT floating-point-input-value
MTH$GSQRT floating-point-input-value
Each of the above formats accepts as input one of the floating-point types.

MTH$SQRT_R3
MTH$DSQRT_R5
MTH$GSQRT_R5
Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: f_floating, D_floating, G_floating
access: write only
mechanism: by value

The square root of floating-point-input-value. MTH$SQRT returns an F­
floating number. MTH$DSQRT returns a D-floating number. MTH$GSQRT
returns a G-floating number.

floating-point-input-value
VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: read only
mechanism: by reference

Input value. The floating-point-input-value argument is the address of
a .floating-point number that contains this input value. For MTH$SQRT,
floating-point-input-value specifies an F-floating number. For
MTH$DSQRT, floating-point-input-value specifies a D-floating number.
For MTH$GSQRT, floating-point-input-value specifies a G-floating number.

The square root of Xis computed as follows:

If X < 0, an error is signaled.

Let X = 2K * F

where:

K is the exponential part of the floating-point data

F is the fractional part of the floating-point data

CONDITION
VALUES
SIGNALED

MTH$xSQRT

If K is even:
x = 212•P) * F,
zSQRT(X) = 2P * zSQRT(F),
1/2~F < 1, where P = K/2

If K is odd:
x = 2(2•P+1) * F = 2(2•P+2) * (F /2),
zSQRT(X) = 2IP+ll * zSQRT(F /2),
1/4~F/2 < 1/2, where p = (K-1)/2

Let F' = A * F + B, when K is even:

A= 0.95F6198 (hex)

B = 0.6BA5918 (hex)

Let F' =A* (F /2) + B, when K is odd:

A = O.D413CCC (hex)

B = 0.4C 1 E248 (hex)

Let K' = P, when K is even

Let K' = P+1, when K is odd

Let Y[O) = 2K' * F' be a straight line approximation within the given interval
using coefficients A and B which minimize the absolu~e error at the midpoint
and endpoint.

Starting with Y[O], n Newton-Raphson iterations are performed:

Y[n + 1] = 1/2 * (Y[n] + X/Y[n])

where n = 2, 3, or 3 for z = F-floating, D-floating, or G-floating, respectively.

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HSQRT.

SS$_ROPRAND

MTH$_SQUROONEG

Reserved operand. The MTH$xSORT procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Square root of negative number. Argument
floating-point-input-value is less than 0.0.
LIB$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector
CHF$L _MCH _SA VRO /R 1 . The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF$L_
MCH_SAVRO/R1.

MTH-137

MTH$xTAN

MTH$xT AN Tangent of Angle Expressed in
Radians

FORMAT

jsb entries

RETURNS

ARGUMENTS

MTH-138

The Tangent of Angle Expressed in Radians routine returns the tangent of
a given angle (in radians).

MTH$T AN angle-in-radians
MTH$DTAN angle-in-radians
MTH$GT AN angle-in-radians
Each of the above formats accepts as input one of the floating-point types.

MTH$TAN_R4
MTH$DTAN_R7
MTH$GTAN_R7
Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: write only
mechanism: by value

The tangent of the angle specified by angle-in-radians. MTH$TAN
returns an F-floating number. MTH$DTAN returns a D-floating number.
MTH$GTAN returns a G-floating number.

angle-in-radians
VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: read only
mechanism: by reference

The input angle (in radians). The angle-in-radians argument is the address of
a floating-point number that is this angle. For MTH$TAN, angle-in-radians
specifies an F-floating number. For MTH$DTAN, angle-in-radians specifies a
D-floating number. For MTH$GTAN, angle-in-radians specifies a G-floating
number.

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH$xTAN

When the input argument is expressed in radians, the tangent function is
computed as follows:

1 If IXI < 2<-!12>, then zTAN(X) = X (see the section on MTH$zCOSH
for the definition of f)

2 Otherwise, call MTH$zSINCOS to obtain zSIN(X) and zCOS(X); then

a. If zCOS(X) = 0, signal overflow

b. Otherwise, zT AN(X) = zSI N(X)/ zCOS(X)

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HTAN.

SS$_ROPRAND

MTH$_FLOOVEMA T

Reserved operand. The MTH$xT AN procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in Math Library.

MTH-139

MTH$xTAND

MTH$xTAND Tangent of Angle Expressed in
Degrees

FORMAT

jsb entries

RETURNS

ARGUMENTS

MTH-140

The Tangent of Angle Expressed in Degrees routine returns the tangent of
a given angle (in degrees).

MTH$T AND angle-in-degrees
MTH$DTAND angle-in-degrees
MTH$GTAND angle-in-degrees
Each of the above formats accepts as input one of the floating-point types.

MTH$TAND_R4
MTH$DTAND_R7
MTH$GTAND_R7
Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: write only
mechanism: by value

Tangent of the angle specified by angle-in-degrees. MTH$TAND returns
an F-floating number. MTH$DTAND returns a D-floating number.
MTH$GTAND returns a G-floating number.

angle-in-degrees
VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: read only
mechanism: by reference

The input angle (in degrees). The angle-in-degrees argument is the address
of a floating-point number which is this angle. For MTH$TAND, angle-in­
degrees specifies an F-floating number. For MTH$DTAND, angle-in-degrees
specifies a D-floating number. For MTH$GTAND, angle-in-degrees specifies
a G-floating number.

DESCRIPTION

CONDITION
VALUES
SIGNALED

MTH$xTAND

When the input argument is expressed in degrees, the tangent function is
computed as follows:

1 If IXI < (180/7r)*2<-2/<e-l)) and underflow signaling is enabled, underflow
is signaled (see the section on MTH$zCOSH for the definition of e).

2 Otherwise, if IXI < (180/7r) * 2<-!!2>, then zTAND(X) = (7r/l80) *X. See
the description of MTH$zCOSH for the definition of f.

3 Otherwise, call MTH$zSINCOSD to obtain zSIND(X) and zCOSD(X).

a. Then, if zCOSD(X) = 0, signal overflow

b. Else, zTAND(X) = zSIND(X)/zCOSD(X)

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HTAND.

SS$_ROPRAND

MTH$_FLOOVEMA T

Reserved operand. The MTH$xT AND procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

Floating-point overflow in Math Library.

MTH-141

MTH$xTANH

MTH$xTANH Compute the Hyperbolic Tangent

FORMAT

RETURNS

ARGUMENTS

MTH-142

The Compute the Hyperbolic Tangent routine returns the hyperbolic
tangent of the input value. ·

MTH$T ANH floating-point-input-value
MTH$DT ANH floating-point-input-value
MTH $GT ANH floating-point-input-value
Each of the above formats accepts as input one of the floating-point types.

VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: write only
mechanism: by value
"'1"'1... - 1----- ---1--1! - '--- ---'- -£ .tl--.t.!-- --!-.a. !--·-.t. -·-1·-- 11. K'T'LJd'.''T'A 1'TLJ
lilt: uypt:lUUU\,; li:lllot:lll Ui UUCl.U.lll:;;-J!U.U.U-.11.1.1:1u1-vcuu1C. 1V.llll..pll"U'lll

returns an F-floating number. MTH$DTANH returns a D-floating number.
MTH$GTANH returns a G-floating number. Unlike the other three routines,
MTH$HTANH returns the hyperbolic tangent by reference in the h-tanh
argument.

floating-point-input-value
VMS usage: floating_point
type: f _floating, D_floating, G_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the
address of a floating-point number that contains this input value. For
MTH$TANH, floating-point-input-value specifies an F-floating number.
For MTH$DTANH, floating-point-input-value specifies a D-floating number.
For MTH$GTANH, floating-point-input-value specifies a G-floating number.

DESCRIPTION

CONDITION
VALUE
SIGNALED

MTH$xTANH

In calculating the hyperbolic tangent of x, the values of g and h are:

z

F

D

G

g

12

28

26

h

10

21

20

For MTH$TANH, MTH$DTANH, and MTH$GTANH the hyperbolic tangent
of x is then computed as follows:

Value of x

lxl9-g
2-g < IXI < 0.5

0.5~ IXI < 1.0

1.0 < IXI < h

h~IXI

Hyperbolic Tangent Returned

x
xT AN H(X) = X + X 3 * R(X2

), where R(X2
) is a

rational function of X 2
•

xTANH(X) = xTANH(xHI)+xTANH(xLO)*C/B

where C = 1- xTANH(xHI) * xTANH(xHI),

B = 1 + xT AN H(xH I)* xT AN H(xLO),

xHI = 1/2+N/16+1/32 for N=O, 1, ... ,7,

and xLO = X-xHI.

xTANH(X) = (xEXP(2*X)-1)/(xEXP(2*X) + 1)

xT AN H(X) = sign(X) * 1

The routine description for the H-floating point version of this routine is listed
alphabetically under MTH$HTANH.

SS$_ROPRAND Reserved operand. The MTH$xT ANH procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL.

MTH-143

MTH$UMAX

MTH$UMAX Compute Unsigned Maximum

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

MTH-144

The Compute Unsigned Maximum routine computes the unsigned
longword maximum of n unsigned longword arguments, where n is greater
than or equal to 1 .

MTH$UMAX argument {argument, ... }

VMS usage: longword_unsigned
type: longword {unsigned)
access: write only
mechanism: by value

Maximum value returned by MTH$UMAX.

argument
VMS usage: iongword_unsigned
type: longword {unsigned)
access: read only
mechanism: by reference

Argument whose maximum MTH$UMAX computes. Each argument
argument is an unsigned longword that contains one of these values.

argument
VMS usage: longword_unsigned
type: longword {unsigned)
access: read only
mechanism: by reference

Additional arguments whose maximum MTH$UMAX computes. Each
argument argument is an unsigned longword that contains one of these
values.

MTH$UMAX is the unsigned version of MTH$JMAXO.

None.

MTH$UMIN

MTH$UMIN Compute Unsigned Minimum

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

The Compute Unsigned Minimum routine computes the unsigned longword
minimum of n unsigned longword arguments, where n is greater than or
equal to 1.

MTH$UMIN argument [argument, ...]

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Minimum value returned by MTH$UMIN.

argument
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Argument whose minimum MTH$UMIN computes. Each argument
argument is an unsigned longword that contains one of these values.

argument
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Additional arguments whose minimum MTH$UMIN computes. Each
argument argument is an unsigned longword that contains one of these
values.

MTH$UMIN is the unsigned version of MTH$JMINO.

None.

MTH-145

A Undocumented MTH$ Routines

This appendix lists all of the entry point and argument information for the
MTH$ routines not documented in the MTH$ Reference Section of this
manual.

Table A-1 Undocumented MTH$ Routines

Routine Name

MTH$ABS

Format:

Returns:

f-floating:

MTH$DABS

Format:

Returns:

d-floating:

MTH$GABS

Format:

Returns:

g-floating:

MTH$HABS

Format:

Returns:

h-abs-val:

h-floating:

MTH$11ABS

Format:

Returns:

word:

MTH$JIABS

Format:

Returns:

longword:

Entry Point Information

F-f/oating Absolute Value Routine

MTH$ABS f-floating

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

D-f/oating Absolute Value Routine

MTH$DABS d-floating

floating_point, D_floating, write only, by value

floating_point, D_floating, read only, by reference

G-f/oating Absolute Value Routine

MTHSGABS g-floating

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

H-f/oating Absolute Value Routine

MTHSABS h-abs-val, h-floating

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

Word Absolute Value Routine

MTH$11ABS word

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by reference

Longword Absolute Value Routine

MTH$JIABS longword

longword_signed, longword (signed), write only, by value

longword_signed, longword (signed), read only, by reference

A-1

Undocumented MTH$ Routines

Table A-1 (Cont.) Undocumented MTH$ Routines

Routine Name

MTH$11AND

Format:

Returns:

word1:

word2:

MTH$JIAND

Format:

Returns:

longword1:

longword2:

MTH$DBLE

Format:

Returns:

f-floating:

MTH$GDBLE

Format:

Returns:

f-floating:

MTH$DIM

Format:

Returns:

f-floating1:

f-floating2:

MTH$DDIM

Format:

Returns:

d-floating1:

d-floating2:

A-2

Entry Point Information

Bitwise AND of Two Word Parameters Routine

MTHSllAND word 1, word2

word_unsigned, word (unsigned), write only, by value

word_unsigned, word (unsigned), read only, by reference

word_unsigned, word (unsigned), read only, by reference

Bitwise AND of Two Longword Parameters Routine

MTH$JIAN D longword 1 , longword2

longword_unsigned, longword (unsigned), write only, by value

longword_unsigned, longword (unsigned), read only, by reference

longword_unsigned, longword (unsigned), read only, by reference

Convert F-f/oating to D-f/oating (Exact) Routine

MTH$DBLE f-floating

floating_point, O_floating, write only, by value

floating_point, F _floating, read only, by reference

Convert F-f/oating to G-f/oating (Exact) Routine

MTH$GDBLE f-floating

floating_point, G_floating, write only, by value

floating_point, F _floating, read only, by reference

Positive Difference of Two F-floating Parameters Routine

MTH$DIM f-floating 1, f-floating2

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

floating_point, F _floating, read only, by reference

Positive Difference of Two D-f/oating Parameters Ro~tine

MTH$DDIM d-floating 1, d-floating2

floating_point, O_floating, write only, by value

floating_point, O_floating, read only, by reference

floating_point, O_floating, read only, by reference

Undocumented MTH$ Routines

Table A-1 (Cont.) Undocumented MTH$ Routines

Routine Name Entry Point Information

MTH$GDIM Positive Difference of Two G-floating Parameters Routine

MTH$HDIM

MTH$11DIM

MTH$JIDIM

MTH$11EOR

MTH$JIEOR

Format:

Returns:

g-floating1:

g-floating2:

Format:

Returns:

h-floating:

h-floating1 :

h-floating2:

Format:

Returns:

word1:

word2:

Format:

Returns:

longword1:

longword2:

Format:

Returns:

word1:

word2:

Format:

Returns:

longword1:

longword2:

MTH$GDIM g-floating1, g-floating2

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

floating_point, G_floating, read only, by reference

Positive Difference of Two H-floating Parameters Routine

MTH$HDIM h-floating, h-floating 1, h-floating2

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

floating_point, H_floating, read only, by reference

Positive Difference of Two Word Parameters Routine

MTH$11DIM word1, word2

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by reference

word_signed, word (signed), read only, by reference

Positive Difference of Two Longword Parameters Routine

MTH$JI DIM longword 1 , longword2

longword_signed, longword (signed), write only, by value

longword_signed, longword (signed), read only, by reference

longword_signed, longword (signed), read only, by reference

Bitwise Exclusive OR of Two Word Parameters Routine

MTH$11EOR word1, word2

word_unsigned, word (unsigned), write only, by value

word_unsigned, word (unsigned), read only, by reference

word_unsigned, word (unsigned), read only, by reference

Bitwise Exclusive OR of Two Longword Parameters Routine

MTH$JIEOR longword1, longword2

longword_unsigned, longword (unsigned), write only, by value

longword_unsigned, longword (unsigned), read only, by reference

longword_unsigned, longword (unsigned), read only, by reference

A-3

Undocumented MTH$ Routines

Table A-1 (Cont.) Undocumented MTH$ Routines

Routine Name Entry Point Information

MTH$11FIX

Format:

Returns:

f-floating:

MTH$JIFIX

Format:

Returns:

f-floating:

MTH$FLOATI

Format:

Returns:

word:

MTH$DFLOTI

Format:

Returns:

word:

MTH$GFLOTI

Format:

Returns:

word:

MTH$FLOATJ

Format:

Returns:

longword:

MTH$DFLOTJ

Format:

Returns:

longword:

A-4

Convert F-f/oating to Word (Truncated) Routine

MTH$11FIX f-floating

word_signed, word (signed), write only, by value

floating_point, F _floating, read only, by reference

Convert F-f/oating to Longword (Truncated) Routine

MTH$JIFIX f-floating

longword_signed, longword (signed), write only, by value

floating_point, F _floating, read only, by reference

Convert Word to F-f/oating (Exact) Routine

MTH$FLOATI word

floating_point, F _floating, write only, by value

word_signed, word (signed), read only, by reference

Convert Word to D-f/oating (Exact) Routine

MTH$DFLOTI word

floating_point, D_floating, write only, by value

word_signed, word (signed), read only, by reference

Convert Word to G-f/oating (Exact) Routine

MTH$GFLOTI word

floating_point, G_floating, write only, by value

word_signed, word (signed), read only, by reference

Convert Longword to F-f/oating (Exact) Routine

MTH$FLOAT J longword

floating_point, F _floating, write only, by value

longword_signed, longword (signed), read only, by reference

Convert Longword to D-f/oating (Exact) Routine

MTH$DFLOT J longword

floating_point, D_floating, write only, by value

longword_signed, longword (signed), read only, by reference

Undocumented MTH$ Routines

Table A-1 (Cont.) Undocumented MTH$ Routines

Routine Name

MTH$GFLOTJ

MTH$FLOOR

MTH$DFLOOR

MTH$GFLOOR

MTH$HFLOOR

MTH$AINT

Format:

Returns:

longword:

Format:

JSB:

Returns:

f-floating:

Format:

JSB:

Returns:

d-floating:

Format:

JSB:

Returns:

g-floating:

Format:

JSB:

Returns:

max-h-float:

h-floating:

Format:

JSB:

Returns:

f-floating:

Entry Point Information

Convert Longword to G-f/oating (Exact) Routine

MTH$GFLOT J longword

floating_point, G_floating, write only, by value

longword_signed, longword (signed), read only, by reference

Convert F-f/oating to Greatest F-floating Integer Routine

MTH$FLOOR f-floating

MTH$FLOQR_R1 f-floating

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

Convert D-f/oating to Greatest D-floating Integer Routine

MTH$DFLOOR d-floating

MTH$DFLOQR_R3 d-floating

floating_point, O_floating, write only, by value

floating_point, D_floating, read only, by reference

Convert G-floating to Greatest G-floating Integer Routine

MTH$GFLOOR g-floating

MTH$GFLOOR_R3 g-floating

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

Convert H-f/oating to Greatest H-floating Integer Routine

MTH$HFLOOR max-h-float, h-floating

MTH$HFLOQR_R7 h-floating

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

Convert F-floating to Truncated F-floating Routine

MTH$AI NT f-floating

MTH$AINT_R2 f-floating

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

A-5

Undocumented MTH$ Routines

Table A-1 (Cont.) Undocumented MTH$ Routines

Routine Name

MTH$DINT

Format:

JSB:

Returns:

d-floating:

MTH$11DINT

Format:

Returns:

d-floating:

MTH$JIDINT

Format:
D +
1ui::;11.u111~.

d-floating:

MTH$GINT

Format:

JSB:

Returns:

g-floating:

MTH$11GINT

Format:

Returns:

g-floating:

MTH$JIGINT

Format:

Returns:

g-floating:

MTH$HINT

Format:

JSB:

Returns:

trunc-h-flt:

h-floating:

A-6

Entry Point Information

Convert 0-f/oating to Truncated 0-f/oating Routine

MTH$DINT d-floating

MTH$DINT_R4 d-floating

floating_point, D_floating, write only, by value

floating_point, D_floating, read only, by reference

Convert 0-f/oating to Word (Truncated) Routine

MTH$11DINT d-floating

word_signed, word (signed), write only, by value

floating_point, D_floating, read only, by reference

Convert 0-f/oating to Longword (Truncated) Routine

MTH$JIDINT d-floating
1,....,,,.., .. ,,..1 .,.;,..,..,,n..I lnnn\A1nr..I /.,.innorH \Alri-to nnlu hu u!:lll110
IU11!:fVVUIU-'11!:f11'JU1 IVll~YVVl'-A \~l::JlllV'-Al1 vv111.v ""'"JI ,_,, """"'"'9""

floating_point, D_floati.ng, read only, by reference

Convert G-f/oating to G-f/oating (Truncated) Routine

MTH$GINT g-floating

MTH$GINT_R4 g-floating

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

Convert G-f/oating to Word (Truncated) Routine

MTH$11GINT g-floating

word_signed, word (signed), write only, by value

floating_point, G_floating, read only, by reference

Convert G-floating to Longword (Truncated) Routine

MTH$JIGINT g-floating

longword_signed, longword (signed), write only, by value

floating_point, G_floating, read only, by reference

Convert H-f/oating to H-f/oating (Truncated) Routine

MTH$HINT trunc-h-flt, h-floating

MTH$HI NT_RS h-floating

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

Undocumented MTH$ Routines

Table A-1 (Cont.) Undocumented MTH$ Routines

Routine Name

MTH$11HINT

MTH$JIHINT

MTH$11NT

MTH$JINT

MTH$110R

MTH$JIOR

MTH$AIMAXO

Format:

Returns:

h-floating:

Format:

Returns:

h-floating:

Format:

Returns:

f-floating:

Format:

Returns:

f-floating:

Format:

Returns:

word1:

word2:

Format:

Returns:

longword1:

longword2:

Format:

Returns:

word:

Entry Point Information

Convert H-f/oating to Truncated Word Routine

MTH$11HINT h-floating

word_signed, word (signed), write only, by value

floating_point, H_floating, read only, by reference

Convert H-f/oating to Truncated Longword Routine

MTH$JIHINT h-floating

longword_signed, longword (signed), write only, by value

floating_point, H_floating, read only, by reference

Convert F-f/oating to Word (Truncated) Routine

MTH$11NT f-floating

word_signed, word (signed), write only, by value

floating_point, F _floating, read only, by reference

Convert F-f/oating to Longword (Truncated) Routine

MTH$JINT f-floating

longword_signed, longword (signed), write only, by value

floating_point, F _floating, read only, by reference

Bitwise Inclusive OR of Two Word Parameters Routine

MTH$110R word 1, word2

word_unsigned, word (unsigned), write only, by value

word_unsigned, word (unsigned), read only, by reference

word_unsigned, word (unsigned), read only, by reference

Bitwise Inclusive OR of Two Longword Parameters Routine

MTH$JIOR longword 1, longword2

longword_unsigned, longword (unsigned), write only, by value

longword_unsigned, longword (unsigned), read only, by reference

longword_unsigned, longword (unsigned), read only, by reference

F-f/oating Maximum of N Word Parameters Routine

MTH$AIMAXO word, ...

floating_point, F _floating, write only, by value

word_signed, word (signed), read only, by reference

A-7

Undocumented MTH$ Routines

Table A-1 (Cont.) Undocumented MTH$ Routines

Routine Name

MTH$AJMAXO

MTH$1MAXO

MTH$JMAXO

MTH$AMAX1

MTH$DMAX1

MTH$GMAX1

MTH$HMAX1

A-8

Format:

Returns:

longword:

Format:

Returns:

word:

Format:

Returns:

longword:

Format:

Returns:

f-floating:

Format:

Returns:

d-floating:

Format:

Returns:

g-floating:

Format:

Returns:

h-float-max:

h-floating:

Entry Point Information

F-f/oating Maximum of N Longword Parameters Routine

MTH$AJMAXO longword, ...

floating_point, F _floating, write only, by value

longword_signed, longword (signed), read only, by reference

Word Maximum of N Word Parameters Routine

MTH$1MAXO word, ...

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by reference

Longword Maximum of N Longword Parameters Routine

MTH$JMAXO longword, ...

longword_signed, longword (signed), write only, by value

longword_signed, longword (signed), read only, by reference

F-f/oating Maximum of N F-floating Parameters Routine

MTH$AMAX1 f-floating, ...

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

D-f/oating Maximum of N D-floating Parameters Routine

MTH$DMAX1 d-floating, ...

floating~point, O_floating, write only, by value

floating_point, O_floating, read only, by reference

G-f/oating Maximum of N G-f/oating Parameters Routine

MTH$GMAX1 g-floating, ...

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

H-floating Maximum of N H-f/oating Parameters Routine

MTH$HMAX1 h-float-max, h-floating, ...

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

Undocumented MTH$ Routines

Table A-1 (Cont.) Undocumented MTH$ Routines

Routine Name

MTH$1MAX1

MTH$JMAX1

MTH$AIMINO

MTH$AJMINO

MTH$1MINO

MTH$JMINO

MTH$AMIN1

Format:

Returns:

f-floating:

Format:

Returns:

f-floating:

Format:

Returns:

word:

Format:

Returns:

longword:

Format:

Returns:

word:

Format:

Returns:

longword:

Format:

Returns:

f-floating:

Entry Point Information

Word Maximum of N F-f/oating Parameters Routine

MTH$1MAX1 f-floating, ...

word_signed, word (signed), write only, by value

floating_point, F _floating, read only, by reference

Longword Maximum of N F-f/oating Parameters Routine

MTH$JMAX1 f-floating, ...

longword_signed, longword (signed), write only, by value

floating_point, F _floating, read only, by reference

F-f/oating Minimum of N Word Parameters Routine

MTH$AIMINO word, ...

floating_point, F _floating, write only, by value

word_signed, word (signed), read only, by reference

F-f/oating Minimum of N Longword Parameters Routine

MTH$AJMINO longword, ...

floating_point, F _floating, write only, by value

longword_signed, longword (signed), read only, by reference

Word Minimum of N Word Parameters Routine

MTH$1MINO word, ...

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by reference

Longword Minimum of N Longword Parameters Routine

MTH$JMINO longword, ...

longword_signed, longword (signed), write only, by value

longword_signed, longword (signed), read only, by reference

F-f/oating Minimum of N F-f/oating Parameters Routine

MTH$AMIN1 f-floating, ...

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

A-9

Undocumented MTH$ Routines

Table A-1 (Cont.) Undocumented MTH$ Routines

Routine Name

MTH$DMIN1

MTH$GMIN1

MTH$HMIN1

MTH$1MIN1

MTH$JMIN1

MTH$AMOD

MTH$DMOD

A-10

Format:

Returns:

d-floating:

Format:

Returns:

g-floating:

Format:

Returns:

h-float-max:

h-floating:

Format:

Returns:

f-floating:

Format:

Returns:

f-floating:

Format:

Returns:

dividend:

divisor:

Format:

Returns:

dividend:

divisor:

Entry Point Information

D-f/oating Minimum of N D-f/oating Parameters Routine

MTH$DMI N 1 d-floating, ...

floating_point, D_floating, write only, by value

floating_point, D_floating, read only, by reference

G-f/oating Minimum of N G-f/oating Parameters Routine

MTH$GMIN1 g-floating, ...

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

H-f/oating Minimum of N H-floating Parameters Routine

MTH$HMIN1 h-float-max, h-floating, ...

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

Word Minimum of N F-f/oating Parameters Routine

MTH$1MIN1 f-floating, ...

word_signed, word (signed), write only, by value

floating_point, F _floating, read only, by reference

Longword Minimum of N F-f/oating Parameters Routine

MTH$JMIN1 f-floating, ...

longword_signed, longword (signed), write only, by value

floating_point, F _floating, read only, by reference

Remainder of Two F-f/oating Parameters Routine

MTH$AMOD dividend, divisor

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

floating_point, F _floating, read only, by reference

Remainder of Two D-f/oating Parameters Routine

MTH$DMOD dividend, divisor

floating_point, D_floating, write only, by value

floating_point, D_floating, read only, by reference

floating_point, D_floating, read only, by reference

Undocumented MTH$ Routines

Table A-1 (Cont.) Undocumented MTH$ Routines

Routine Name

MTH$GMOD

Format:

Returns:

dividend:

divisor:

MTH$HMOD

Format:

Returns:

h-mod:

dividend:

divisor:

MTH$1MOD

Format:

Returns:

dividend:

divisor:

MTH$JMOD

Format:

Returns:

dividend:

divisor:

MTH$ANINT

Format:

Returns:

f-floating:

MTH$DNINT

Format:

Returns:

d-floating:

Entry Point Information

Remainder of Two G-f/oating Parameters Routine

MTH$GMOD dividend, divisor

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

floating_point, G_floating, read only, by reference

Remainder of Two H-f/oating Parameters Routine

MTHSHMOD h-mod, dividend, divisor

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

floating_point, H_floating, read only, by reference

Remainder of Two Word Parameters Routine

MTH$1MOD dividend, divisor

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by reference

word_signed, word (signed), read only, by reference

Remainder of Two Longword Parameters Routine

MTH$JMOD dividend, divisor

longword_signed, longword (signed), write only, by value

longword_signed, longword (signed), read only, by reference

longword_signed, longword (signed), read only, by reference

Convert F-f/oating to Nearest F-f/oating Integer Routine

MTH$ANINT f-floating

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

Convert D-floating to Nearest D-f/oating Integer Routine

MTH$DNINT d-floating

floating_point, D_floating, write only, by value

floating_point, D_floating, read only, by reference

A-11

Undocumented MTH$ Routines

Table A-1 (Cont.) Undocumented MTH$ Routines

Routine Name

MTH$11DNNT

MTH$JIDNNT

MTH$GNINT

MTH$11GNNT

MTH$JIGNNT

MTH$HNINT

MTH$11HNNT

A-12

Format:

Returns:

d-floating:

Format:

Returns:

d-floating:

Format:

Returns:

g-floating:

Format:

Returns:

g-floating:

Format:

Returns:

g-floating:

Format:

Returns:

nearst-h-flt:

h-floating:

Format:

Returns:

h-floating:

Entry Point Information

Convert 0-floating to Word Integer Routine

MTH$11DNNT d-floating

word_signed, word (signed), write only, by value

floating_point, D_floating, read only, by reference

Convert D-floating to Nearest Longword Integer Routine

MTH$JIDNNT d-floating

longword_signed, longword (signed), write only, by value

floating_point, D_floating, read only, by reference

Convert G-f/oating to Nearest G-f/oating Integer Routine

MTH$GNINT g-floating

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

Convert G-f/oating to Nearest Word Integer Routine

MTH$11GNNT g-floating

word_signed, word (signed), write only, by value

floating_point, G_floating, read only, by reference

Convert G-floating to Nearest Longword Integer Routine

MTH$JIGNNT g-floating

longword_signed, longword (signed), write only, by value

floating_point, G_floating, read only, by reference

Convert H-f/oating to Nearest H-f/oating Integer Routine

MTH$HNINT nearst-h-flt, h-floating

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

Convert H-floating to Nearest Word Integer Routine

MTH$11HNNT h-floating

word_signed, word (signed), write only, by value

floating_point, H_floating, read only, by reference

Undocumented MTH$ Routines

Table A-1 (Cont.) Undocumented MTH$ Routines

Routine Name

MTH$JIHNNT

Format:

Returns:

h-floating:

MTH$1NINT

Format:

Returns:

f-floating:

MTH$JNINT

Format:

Returns:

f-floating:

MTH$1NOT

Format:

Returns:

word:

MTH$JNOT

Format:

Returns:

longword:

MTH$DPROD

Format:

Returns:

f-floating 1 :

f-floating2:

MTH$GPROD

Format:

Returns:

f-floating 1 :

f-floating2:

Entry Point Information

Convert H-floating to Nearest Longword Integer Routine

MTH$JIHNNT h-floating

longword_signed, longword (signed), write only, by value

floating_point, H_floating, read only, by reference

Convert F-floating to Nearest Word Integer Routine

MTH$1NINT f-floating

word_signed, word (signed), write only, by value

floating_point, F _floating, read only, by reference

Convert F-floating to Nearest Longword Integer Routine

MTH$JNINT f-floating

longword_signed, longword (signed), write only, by value

floating_point, F _floating, read only, by reference

Bitwise Complement of Word Parameter Routine

MTH$1NOT word

word_unsigned, word (unsigned), write only, by value

word_unsigned, word (unsigned), read only, by reference

Bitwise Complement of Longword Parameter Routine

MTH$JNOT longword

longword_unsigned, longword (unsigned), write only, by value

longword_unsigned, longword (unsigned), read only, by reference

D-floating Product of Two F-floating Parameters Routine

MTH$DPROD f-floating 1, f-floating2

floating_point, D_floating, write only, by value

floating_point, F _floating, read only, by reference

floating_point, F _floating, read only, by reference

G-f/oating Product of Two F-floating Parameters Routine

MTHSGPROD f-floating 1, f-floating2

floating_point, G_floating, write only, by value

floating_point, F _floating, read only, by reference

floating_point, F _floating, read only, by reference

A-13

Undocumented MTH$ Routines

Table A-1 (Cont.) Undocumented MTH$ Routines

Routine Name Entry Point Information

MTH$SGN

Format:

Returns:

f-floating:

MTH$SGN

Format:

Returns:

d-floating:

MTH$11SHFT

Format:

Returns:

word:

shift-cnt:

MTH$JISHFT

Format:

Returns:

longword:

shift-cnt:

MTH$SIGN

Format:

Returns:

f-float-x:

f-float-y:

MTH$DSIGN

Format:

Returns:

d-float-x:

d-float-y:

A-14

F-f/oating Sign Function

MTH$SGN f-floating

longword_signed, longword (signed), write only, by reference

floating_point, F _floating, read only, by reference

D-f/oating Sign Function

MTH$SGN d-floating

longword_signed, longword (signed), write only, by reference

floating_point, D_floating, read only, by reference

Bitwise Shift of Word Routine

MTH$11SHFT word, shift-cnt

vvord_unsigned, word (unsigned), write only: by value

word_unsigned, word (unsigned), read only, by reference

word_signed, word (signed), read only, by reference

Bitwise Shift of Longword Routine

MTH$JISHFT longword, shift-cnt

longword_unsigned, longword (unsigned), write only, by value

longword_unsigned, longword (unsigned), read only, by reference

longword_signed, longword (signed), read only, by reference

F-floating Transfer of Sign of Y to Sign of X Routine

MTH$SIGN f-float-x, f-float-y

floating_point, F _floating, write only, by value

floating_point, F _floating, read only, by reference

floating_point, F _floating, read only, by reference

D-f/oating Transfer of Sign of Y to Sign of X Routine

MTH$DSIGN d-float-x, d-float-y

floating_point, D_floating, write only, by value

floating_point, D_floating, read only, by reference

floating_point, D_floating, read only, by reference

Undocumented MTH$ Routines

Table A-1 (Cont.) Undocumented MTH$ Routines

Routine Name

MTH$GSIGN

Format:

Returns:

g-float-x:

g-float-y:

MTH$HSIGN

Format:

Returns:

h-result:

h-float-x:

h-float-y:

MTH$11SIGN

Format:

Returns:

word-x:

word-y:

MTH$JISIGN

Format:

Returns:

longwrd-x:

longwrd-y:

MTH$SNGL

Format:

Returns:

d-floating:

MTH$SNGLG

Format:

Returns:

g-floating:

Entry Point Information

G-f/oating Transfer of Sign of Y to Sign of X Routine

MTH$GSIGN g-float-x, g-float-y

floating_point, G_floating, write only, by value

floating_point, G_floating, read only, by reference

floating_point, G_floating, read only, by reference

H-f/oating Transfer of Sign of Y to Sign of X Routine

MTH$HSIGN h-result, h-float-x, h-float-y

None

floating_point, H_floating, write only, by reference

floating_point, H_floating, read only, by reference

floating_point, H_floating, read only, by reference

Word Transfer of Sign of Y to Sign of X Routine

MTH$11SIGN word-x, word-y

word_signed, word (signed), write only, by value

word_signed, word (signed), read only, by reference

word_signed, word (signed), read only, by reference

Longword Transfer of Sign of Y to Sign of X Routine

MTH$JISIGN longwrd-x, longwrd-y

longword_signed, longword (signed), write only, by reference

longword_signed, longword (signed), read only, by reference

longword_signed, longword (signed), read only, by reference

Convert D-floating to F-f/oating (Rounded) Routine

MTH$SNGL d-floating

floating_point, F _floating, write only, by value

floating_point, D_floating, read only, by reference

Convert G-f/oating to F-f/oating (Rounded) Routine

MTH$SNGLG g-floating

floating_point, F _floating, write only, by value

floating_point, G_floating, read only, by reference

A-15

Index

A
Absolute value

See also Mathematics routine
of complex number• MTH-23

Arc cosine
in degrees• MTH-6, MTH-71
in radians• MTH-3, MTH-69

Arc sine
in degrees • MTH-11 , MTH-7 5
in radians•MTH-9, MTH-73

Arc tangent
hyperbolic• MTH-21, MTH-85
in degrees•MTH-15, MTH-19, MTH-79,

MTH-83
in radians• MTH-13, MTH-17, MTH-77,

MTH-81
Arrays

conversion of• MTH-64

c
Complex number• 1-3, MTH-5 7, MTH-59,

MTH-112, MTH-122
absolute value of• MTH-23
complex exponential of• MTH-31 , MTH-33
conjugate of• MTH-44, MTH-45
cosine of• MTH-26, MTH-28
made from floating-point• MTH-40, MTH-42
natural logarithm of• MTH-36, MTH-38
sine of• MTH-53, MTH-54

Conjugate of complex number• MTH-44,
MTH-45

Cosine
in radians• MTH-126

Cosine
hyperbolic• MTH-51 , MTH-89
in degrees• MTH-49, MTH-88, MTH-129
in radians• MTH-4 7, MTH-87
of complex number• MTH-26, MTH-28

D
Double-precision value

converting• MTH-62
converting an array of• MTH-64

E
Exponential• MTH-66, MTH-91

of complex number• MTH-31, MTH-33

H
Hyperbolic arc tangent• MTH-21, MTH-85
Hyperbolic cosine• MTH-51, MTH-89
Hyperbolic sine• MTH-102, MTH-134
Hyperbolic tangent• MTH-110, MTH-142

L
Logarithm

base 2 • MTH-95, MTH-116
common• MTH-97, MTH-118
natural• MTH-93, MTH-114
natural complex• MTH-36, MTH-38

M
Mathematics routine • 1-1

absolute value• 1-4
algorithm• 1-2
bitwise AND operator• 1-4
bitwise complement operator• 1-8
bitwise exclusive OR operator• 1-5
bitwise inclusive OR operator• 1-6
bitwise shift • 1-8
calling convention• 1-2
complex number• 1-3

lndex-1

Index

Mathematics routine (cont'd.)

condition handling • 1-3
conversion of double to single floating-point

value• 1-9
conversion to greatest floating-point integer•

1-5
entry point name • 1-1
F-floating conversion • 1-4
floating-point conversion to nearest value• 1-7
floating-point multiplication• 1-8
floating-point positive difference• 1-5
floating-point sign function• 1-8
integer to floating-point conversion• 1-5
JSB entry point• 1-2
maximum value• 1-6
minimum value• 1-7
remainder• 1-7
truncation of floating-point value• 1-6
undocumented routines• A-1 to A-15

list of• 1-4 to 1-9
MTH$ACOS • MTH-3
MTH$ACOSD • MTH-6
MTH$AIMAG • MTH-112
MTH$ALOG•MTH-114
MTH$ALOG 10 • MTH-118
MTH$ALOG2 • MTH-116
MTH$ASIN • MTH-9
MTH$ASIND • MTH-11
MTH$AT AN• MTH-13
MTH$ATAN2•MTH-17
MTH$AT AND• MTH-15
MTH$ATAND2•MTH-19
MTH$AT ANH• MTH-21
MTH$CABS • MTH-23
MTH$CCOS • MTH-26
MTH$CDABS•MTH-23
MTH$CDCOS i MTH-28
MTH$CDEXP•MTH-33
MTH$CDLOG • MTH-38
MTH$CDSIN • MTH-54
MTH$CDSORT•MTH-59
MTH$CEXP • MTH-31
MTH$CGABS • MTH-23
MTH$CGCOS • MTH-28
MTH$CGEXP•MTH-33
MTH$CGLOG • MTH-38
MTH$CGSIN • MTH-54
MTH$CGSORT•MTH-59
MTH$CLOG • MTH-36
MTH$CMPLX • MTH-40
MTH$CONJG • MTH-44
MTH$COS • MTH-4 7

lndex-2

!\llTH$COSD • MTH-49
MTH$COSH • MTH-51
MTH$CSIN • MTH-53
MTH$CSORT • MTH-5 7
MTH$CVT_DA_GA • MTH-64
MTH$CVT_D_G•MTH-62
MTH$CVT_GA_DA • MTH-64
MTH$CVT _G_D • MTH-62
MTH$DACOS • MTH-3
MTH$DACOSD•MTH-6
MTH$DASIN • MTH-9
MTH$DASIND • MTH-11
MTH$DATAN•MTH~13
MTH$DA T AN2 • MTH-17
MTH$DA T AND• MTH-15
MTH$DATAND2•MTH-19
MTH$DATANH•MTH-21
MTH$DCMPLX • MTH-42
MTH$DCONJG • MTH-45
MTH$DCOS. MTH-4 7
MTH$DCOSD. MTH-49
MTH$DCOSH • MTH-51
MTH$DEXP • MTH-66
MTH$DIMAG • MTH-112
MTH$DLOG • MTH-114
MTH$DLOG 10 • MTH-118
MTH$DLOG2 • MTH-116
MTH$DREAL•MTH-122
MTH$DSIN • MTH-124
MTH$DSINCOS • MTH-126
MTH$DSINCOSD • MTH-129
MTH$DSIND • MTH-132
MTH$DSINH • MTH-134
MTH$DSORT • MTH-136
MTH$DTAN•MTH-138
MTH$DT AND• MTH-140
MTH$DTANH•MTH-142
MTH$EXP • MTH-66
MTH$GACOS • MTH-3
MTH$GACOSD•MTH-6
MTH$GASIN • MTH-9
MTH$GASIND • MTH-11
MTH$GA TAN• MTH-13
MTH$GATAN2•MTH-17
MTH$GATAND•MTH-15
MTH$GATAND2•MTH-19
MTH$GA TANH• MTH-21
MTH$GCMPLX • MTH-42
MTH$GCONJG • MTH-45
MTH$GCOS • MTH-4 7
MTH$GCOSD • MTH-49

MTH$GCOSH•MTH-51
MTH$GEXP • MTH-66
MTH$GIMAG • MTH-112
MTH$GLOG • MTH-114
MTH$GLOG 10 • MTH-118
MTH$GLOG2 • MTH-116
MTH$GREAL•MTH-122
MTH$GSIN • MTH-124
MTH$GSINCOS • MTH-126
MTH$GSINCOSD • MTH-129
MTH$GSIND • MTH-132
MTH$GSINH • MTH-134
MTH$GSQRT • MTH-136
MTH$GT AN• MTH-138
MTH$GT AND• MTH-140
MTH$GT ANH• MTH-142
MTH$HACOS•MTH-69
MTH$HACOSD•MTH-71
MTH$HASIN • MTH-73
MTH$HASIND • MTH-7 5
MTH$HATAN•MTH-77
MTH$HATAN2•MTH-81
MTH$HATAND•MTH-79
MTH$HATAND2•MTH-83
MTH$HATANH•MTH-85
MTH$HCOS • MTH-87
MTH$HCOSD•MTH-88
MTH$HCOSH • MTH-89
MTH$HEXP • MTH-91
MTH$HLOG • MTH-93
MTH$HLOG 10 • MTH-97
MTH$HLOG2•MTH-95
MTH$HSIN • MTH-99
MTH$HSINCOS • MTH-126
MTH$HSINCOSD • MTH-129
MTH$HSIND • MTH-100
MTH$HSINH • MTH-102
MTH$HSQRT•MTH-104
MTH$HT AN• MTH-106
MTH$HT AND• MTH-108
MTH$HT ANH • MTH-110
MTH$RANDOM • MTH-120
MTH$REAL • MTH-122
MTH$SIN • MTH-124
MTH$SINCOS • MTH-126
MTH$SINCOSD • MTH-129
MTH$SIND • MTH-132
MTH$SINH • MTH-134
MTH$SQRT • MTH-136
MTH$T AN• MTH-138
MTH$T AND• MTH-140

MTH$TANH•MTH-142
MTH$UMAX • MTH-144
MTH$UMIN • MTH-145

R
Random number generator• MTH-120

s
Sine

hyperbolic• MTH-102, MTH-134

Index

in degrees• MTH-100, MTH-129, MTH-132
in radians•MTH-99, MTH-124, MTH-126
of complex number• MTH-53, MTH-54

Square root• MTH-104, MTH-136

T
Tangent• MTH-106, MTH-108, MTH-138,

MTH-140
hyperbolic• MTH-110, MTH-142

lndex-3

Reader's Comments VMS RTL Mathematics
(MTH$) Manual
AA-LA 72A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance·.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

I
I
I
I
I
I
I

-- Do Not Tear - Fold Here and Tape -------------------[lllr---------------1
No Postage I

mamaomn™ ~:~=j~=~y 1

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 ••••• 11.11 •••• 11 •••• 1.11.1 •• 1.1 •• 1 ••. 1.1 ••• 1.11 •• 1

in the I
United States I

I

·- Do Not Tear - Fold Here --

